4.6 Article

Ozanezumab Dose Selection for Amyotrophic Lateral Sclerosis by Pharmacokinetic-Pharmacodynamic Modelling of Immunohistochemistry Data from Patient Muscle Biopsies

Journal

PLOS ONE
Volume 10, Issue 2, Pages -

Publisher

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0117355

Keywords

-

Ask authors/readers for more resources

Amyotrophic Lateral Sclerosis (ALS) is a rare and fatal neurodegenerative disease with a high unmet medical need. In this context, a potential therapy should be brought to patients in the most expeditious way and early exploration of pharmacology is highly beneficial. Ozanezumab, a humanised IgG monoclonal antibody against Nogo-A protein which is an inhibitor of neurite outgrowth, is currently under development for the treatment of ALS and has been recently assessed in 76 patients in a first-in-human study. Inadequate target engagement has been recognised as a major contributing reason for drug trial failures. In this work, we describe the development of a pharmacokinetic-pharmacodynamic (PKPD) model using immunohistochemistry (IHC) data of co-localization of ozanezumab with Nogo-A in skeletal muscle as a surrogate measure of target engagement. The rich plasma concentration data and the sparse IHC data after one or two intravenous doses of ozanezumab were modelled simultaneously using a non-linear mixed-effect approach. The final PKPD model was a two-compartment PK model combined with an effect compartment PD model that accounted for the delay in ozanezumab concentrations to reach the site of action which is skeletal muscle. Diagnostic plots showed a satisfactory fit of both PK and IHC data. The model was used as a simulation tool to design a dose regimen for sustained drug-target co-localization in a phase II study.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available