4.6 Article

De novo Sequencing, Assembly and Characterization of Antennal Transcriptome of Anomala corpulenta Motschulsky (Coleoptera: Rutelidae)

Journal

PLOS ONE
Volume 9, Issue 12, Pages -

Publisher

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0114238

Keywords

-

Funding

  1. Anhui Natural Science Foundation [1308085QC52]
  2. Anhui Academy of Agricultural Sciences [201003025, 11C1106]

Ask authors/readers for more resources

Background: Anomala corpulenta is an important insect pest and can cause enormous economic losses in agriculture, horticulture and forestry. It is widely distributed in China, and both larvae and adults can cause serious damage. It is difficult to control this pest because the larvae live underground. Any new control strategy should exploit alternatives to heavily and frequently used chemical insecticides. However, little genetic research has been carried out on A. corpulenta due to the lack of genomic resources. Genomic resources could be produced by next generation sequencing technologies with low cost and in a short time. In this study, we performed de novo sequencing, assembly and characterization of the antennal transcriptome of A. corpulenta. Results: Illumina sequencing technology was used to sequence the antennal transcriptome of A. corpulenta. Approximately 76.7 million total raw reads and about 68.9 million total clean reads were obtained, and then 35,656 unigenes were assembled. Of these unigenes, 21,463 of them could be annotated in the NCBI nr database, and, among the annotated unigenes, 11,154 and 6,625 unigenes could be assigned to GO and COG, respectively. Additionally, 16,350 unigenes could be annotated in the Swiss-Prot database, and 14,499 unigenes could map onto 258 pathways in the KEGG Pathway database. We also found 24 unigenes related to OBPs, 6 to CSPs, and in total 167 unigenes related to chemodetection. We analyzed 4 OBPs and 3CSPs sequences and their RT-qPCR results agreed well with their FPKM values. Conclusion: We produced the first large-scale antennal transcriptome of A. corpulenta, which is a species that has little genomic information in public databases. The identified chemodetection unigenes can promote the molecular mechanistic study of behavior in A. corpulenta. These findings provide a general sequence resource for molecular genetics research on A. corpulenta.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available