4.6 Article

Hippocampal Feedforward Inhibition Focuses Excitatory Synaptic Signals into Distinct Dendritic Compartments

Journal

PLOS ONE
Volume 8, Issue 11, Pages -

Publisher

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0080984

Keywords

-

Funding

  1. Swiss National Science Foundation [31003A-118352]
  2. Swiss National Science Foundation (SNF) [31003A-118352] Funding Source: Swiss National Science Foundation (SNF)

Ask authors/readers for more resources

Feedforward inhibition controls the time window for synaptic integration and ensures temporal precision in cortical circuits. There is little information whether feedforward inhibition affects neurons uniformly, or whether it contributes to computational refinement within the dendritic tree. Here we demonstrate that feedforward inhibition crucially shapes the integration of synaptic signals in pyramidal cell dendrites. Using voltage-sensitive dye imaging we studied the transmembrane voltage patterns in CA1 pyramidal neurons after Schaffer collateral stimulation in acute brain slices from mice. We observed a high degree of variability in the excitation-inhibition ratio between different branches of the dendritic tree. Many dendritic segments showed no depolarizing signal at all, especially the basal dendrites that received predominantly inhibitory signals. Application of the GABAA receptor antagonist bicuculline resulted in the spread of depolarizing signals throughout the dendritic tree. Tetanic stimulation of Schaffer collateral inputs induced significant alterations in the patterns of excitation/inhibition, indicating that they are modified by synaptic plasticity. In summary, we show that feedforward inhibition restricts the occurrence of depolarizing signals within the dendritic tree of CA1 pyramidal neurons and thus refines signal integration spatially.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available