4.6 Article

Endoglin Haplo-Insufficiency Modifies the Inflammatory Response in Irradiated Mouse Hearts without Affecting Structural and Mircovascular Changes

Journal

PLOS ONE
Volume 8, Issue 7, Pages -

Publisher

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0068922

Keywords

-

Funding

  1. European Atomic Energy Community's Seventh Framework Program [211403]
  2. Dutch Cancer Foundation [NKI 2008-3993]

Ask authors/readers for more resources

Background: It is now widely recognized that radiotherapy of thoracic and chest wall tumors increases the long-term risk of cardiovascular damage although the underlying mechanisms are not fully elucidated. There is increasing evidence that microvascular damage is involved. Endoglin, an accessory receptor for TGF-beta 1, is highly expressed in damaged endothelial cells and may play a crucial role in cell proliferation and revascularization of damaged heart tissue. We have therefore specifically examined the role of endoglin in microvascular damage and repair in the irradiated heart. Materials & Methods: A single dose of 16 Gy was delivered to the heart of adult Eng(+/+) or Eng(+/-) mice and damage was evaluated at 4, 20 and 40 weeks, relative to age-matched controls. Gated single photon emission computed tomography (gSPECT) was used to measure cardiac geometry and function, and related to histo-morphology, microvascular damage (detected using immuno-and enzyme-histochemistry) and gene expression (detected by microarray and real time PCR). Results: Genes categorized according to known inflammatory and immunological related disease were less prominently regulated in irradiated Eng(+/-) mice compared to Eng(+/+) littermates. Fibrosis related genes, TGF-beta 1, ALK 5 and PDGF, were only upregulated in Eng(+/+) mice during the early phase of radiation-induced cardiac damage (4 weeks). In addition, only the Eng(+/+) mice showed significant upregulation of collagen deposition in the early fibrotic phase (20 weeks) after irradiation. Despite these differences in gene expression, there was no reduction in inflammatory invasion (CD45+cells) of irradiated Eng(+/-) hearts. Microvascular damage (microvascular density, alkaline phosphatase and von-Willebrand-Factor expression) was also similar in both strains. Conclusion: Eng(+/-) mice displayed impaired early inflammatory and fibrotic responses to high dose irradiation compared to Eng(+/+) littermates. This did not result in significant differences in microvascular damage or cardiac function between the strains.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available