4.6 Article

Biochemical Characterization of Anopheles gambiae SRPN6, a Malaria Parasite Invasion Marker in Mosquitoes

Journal

PLOS ONE
Volume 7, Issue 11, Pages -

Publisher

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0048689

Keywords

-

Funding

  1. National Institutes of Health [3P20RR017708-07S1, P20RR017686, 1R01AI095842]

Ask authors/readers for more resources

Serine proteinase inhibitors of the serpin family are well known as negative regulators of hemostasis, thrombolysis and innate immune responses. Additionally, non-inhibitory serpins serve functions as chaperones, hormone transporters, or anti-angiogenic factors. In the African malaria mosquito, Anopheles gambiae s.s., at least three serpins (SRPNs) are implicated in the innate immune response against malaria parasites. Based on reverse genetic and cell biological analyses, AgSRPN6 limits parasite numbers and transmission and has been postulated to control melanization and complement function in mosquitoes. This study aimed to characterize AgSRPN6 biophysically and determine its biochemical mode of action. The structure model of AgSRPN6, as predicted by I-Tasser showed the protein in the native serpin fold, with three central beta-sheets, nine surrounding alpha-helices, and a protruding reactive center loop. This structure is in agreement with biophysical and functional data obtained from recombinant (r) AgSRPN6, produced in Escherichia coli. The physical properties of purified rAgSRPN6 were investigated by means of analytical ultracentrifugation, circular dichroism, and differential scanning calorimetry tools. The recombinant protein exists predominantly as a monomer in solution, is composed of a mixture of alpha-helices and beta-sheets, and has a mid-point unfolding temperature of 56 degrees C. Recombinant AgSRPN6 strongly inhibited porcine pancreatic kallikrein and to a lesser extent bovine pancreatic trypsin in vitro. Furthermore, rAgSRPN6 formed inhibitory, SDS-stable, higher molecular weight complexes with prophenoloxidase-activating proteinase (PAP) 1, PAP3, and Hemolymph protein (HP) 6, which are required for melanization in the lepidopteran model organism, Manduca sexta. Taken together, our results strongly suggest that AgSRPN6 takes on a native serpin fold and is an inhibitor of trypsin-like serine proteinases. Citation: An C, Hiromasa Y, Zhang X, Lovell S, Zolkiewski M, et al. (2012) Biochemical Characterization of Anopheles gambiae SRPN6, a Malaria Parasite Invasion Marker in Mosquitoes. PLoS ONE 7(11): e48689. doi:10.1371/journal.pone.0048689

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available