4.6 Article

A Novel Approach for Transcription Factor Analysis Using SELEX with High-Throughput Sequencing (TFAST)

Journal

PLOS ONE
Volume 7, Issue 8, Pages -

Publisher

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0042761

Keywords

-

Funding

  1. Public Health Service from the National Institute of Health [AI43363, AI59722, AI007528, T32 GM07863]

Ask authors/readers for more resources

Background: In previous work, we designed a modified aptamer-free SELEX-seq protocol (afSELEX-seq) for the discovery of transcription factor binding sites. Here, we present original software, TFAST, designed to analyze afSELEX-seq data, validated against our previously generated afSELEX-seq dataset and a model dataset. TFAST is designed with a simple graphical interface (Java) so that it can be installed and executed without extensive expertise in bioinformatics. TFAST completes analysis within minutes on most personal computers. Methodology: Once afSELEX-seq data are aligned to a target genome, TFAST identifies peaks and, uniquely, compares peak characteristics between cycles. TFAST generates a hierarchical report of graded peaks, their associated genomic sequences, binding site length predictions, and dummy sequences. Principal Findings: Including additional cycles of afSELEX-seq improved TFAST's ability to selectively identify peaks, leading to 7,274, 4,255, and 2,628 peaks identified in two-, three-, and four-cycle afSELEX-seq. Inter-round analysis by TFAST identified 457 peaks as the strongest candidates for true binding sites. Separating peaks by TFAST into classes of worst, second-best and best candidate peaks revealed a trend of increasing significance (e-values 4.5x10(12), 2.9x10(-46), and 1.2x10(-73)) and informational content (11.0, 11.9, and 12.5 bits over 15 bp) of discovered motifs within each respective class. TFAST also predicted a binding site length (28 bp) consistent with non-computational experimentally derived results for the transcription factor PapX (22 to 29 bp). Conclusions/Significance: TFAST offers a novel and intuitive approach for determining DNA binding sites of proteins subjected to afSELEX-seq. Here, we demonstrate that TFAST, using afSELEX-seq data, rapidly and accurately predicted sequence length and motif for a putative transcription factor's binding site.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available