4.6 Article

Mapping Traumatic Axonal Injury Using Diffusion Tensor Imaging: Correlations with Functional Outcome

Journal

PLOS ONE
Volume 6, Issue 5, Pages -

Publisher

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0019214

Keywords

-

Funding

  1. Medical Research Council (UK) [G9439390 ID 65883]
  2. UK National Institute of Health Research Biomedical Research Centre at Cambridge
  3. UK Department of Health
  4. Gates Cambridge Trust
  5. Overseas Research Studentship
  6. NIHR Cambridge Biomedical Research Centre
  7. Academy of Medical Sciences/Health Foundation
  8. Royal College of Anaesthetists
  9. Evelyn Trust
  10. Medical Research Council [G0600986, G0001354, G1000183B, G0001237, G0001354B, G9439390] Funding Source: researchfish
  11. National Institute for Health Research [NF-SI-0508-10327, ACF-2009-14-007] Funding Source: researchfish
  12. MRC [G9439390, G0001237, G0600986] Funding Source: UKRI

Ask authors/readers for more resources

Background: Traumatic brain injury is a major cause of morbidity and mortality worldwide. Ameliorating the neurocognitive and physical deficits that accompany traumatic brain injury would be of substantial benefit, but the mechanisms that underlie them are poorly characterized. This study aimed to use diffusion tensor imaging to relate clinical outcome to the burden of white matter injury. Methodology/Principal Findings: Sixty-eight patients, categorized by the Glasgow Outcome Score, underwent magnetic resonance imaging at a median of 11.8 months (range 6.6 months to 3.7 years) years post injury. Control data were obtained from 36 age-matched healthy volunteers. Mean fractional anisotropy, apparent diffusion coefficient (ADC), and eigenvalues were obtained for regions of interest commonly affected in traumatic brain injury. In a subset of patients where conventional magnetic resonance imaging was completely normal, diffusion tensor imaging was able to detect clear abnormalities. Significant trends of increasing ADC with worse outcome were noted in all regions of interest. In the white matter regions of interest worse clinical outcome corresponded with significant trends of decreasing fractional anisotropy. Conclusions/Significance: This study found that clinical outcome was related to the burden of white matter injury, quantified by diffusivity parameters late after traumatic brain injury. These differences were seen even in patients with the best outcomes and patients in whom conventional magnetic resonance imaging was normal, suggesting that diffusion tensor imaging can detect subtle injury missed by other techniques. An improved in vivo understanding of the pathology of traumatic brain injury, including its distribution and extent, may enhance outcome evaluation and help to provide a mechanistic basis for deficits that remain unexplained by other approaches.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available