4.6 Article

Distinct Visual Working Memory Systems for View-Dependent and View-Invariant Representation

Journal

PLOS ONE
Volume 4, Issue 8, Pages -

Publisher

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0006601

Keywords

-

Funding

  1. University of Southern California

Ask authors/readers for more resources

Background: How do people sustain a visual representation of the environment? Currently, many researchers argue that a single visual working memory system sustains non-spatial object information such as colors and shapes. However, previous studies tested visual working memory for two-dimensional objects only. In consequence, the nature of visual working memory for three-dimensional (3D) object representation remains unknown. Methodology/Principal Findings: Here, I show that when sustaining information about 3D objects, visual working memory clearly divides into two separate, specialized memory systems, rather than one system, as was previously thought. One memory system gradually accumulates sensory information, forming an increasingly precise view-dependent representation of the scene over the course of several seconds. A second memory system sustains view-invariant representations of 3D objects. The view-dependent memory system has a storage capacity of 3-4 representations and the view-invariant memory system has a storage capacity of 1-2 representations. These systems can operate independently from one another and do not compete for working memory storage resources. Conclusions/Significance: These results provide evidence that visual working memory sustains object information in two separate, specialized memory systems. One memory system sustains view-dependent representations of the scene, akin to the view-specific representations that guide place recognition during navigation in humans, rodents and insects. The second memory system sustains view-invariant representations of 3D objects, akin to the object-based representations that underlie object cognition.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available