4.6 Article

MHC-IIB Filament Assembly and Cellular Localization Are Governed by the Rod Net Charge

Journal

PLOS ONE
Volume 3, Issue 1, Pages -

Publisher

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0001496

Keywords

-

Funding

  1. Israel Cancer Research Foundation
  2. Israel Ministry of Health
  3. Israel Cancer Association

Ask authors/readers for more resources

Background. Actin-dependent myosin II molecular motors form an integral part of the cell cytoskeleton. Myosin II molecules contain a long coiled-coil rod that mediates filament assembly required for myosin II to exert its full activity. The exact mechanisms orchestrating filament assembly are not fully understood. Methodology/Principal Findings. Here we examine mechanisms controlling filament assembly of non-muscle myosin IIB heavy chain (MHC-IIB). We show that in vitro the entire C-terminus region of net positive charge, found in myosin II rods, is important for self-assembly of MHC-IIB fragments. In contrast, no particular sequences in the rod region with net negative charge were identified as important for self-assembly, yet a minimal area from this region is necessary. Proper paracrystal formation by MHC-IIB fragments requires the 196aa charge periodicity along the entire coiled-coil region. In vivo, in contrast to self-assembly in vitro, negatively-charged regions of the coiled-coil were found to play an important role by controlling the intracellular localization of native MHC-IIB. The entire positively-charged region is also important for intracellular localization of native MHC-IIB. Conclusions/Significance. A correct distribution of positive and negative charges along myosin II rod is a necessary component in proper filament assembly and intracellular localization of MHC-IIB.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available