4.7 Article

Role of pCeMT, a putative metallothionein from Colocasia esculenta, in response to metal stress

Journal

PLANT PHYSIOLOGY AND BIOCHEMISTRY
Volume 64, Issue -, Pages 25-32

Publisher

ELSEVIER FRANCE-EDITIONS SCIENTIFIQUES MEDICALES ELSEVIER
DOI: 10.1016/j.plaphy.2012.12.009

Keywords

Heavy metal tolerance; Hydrogen peroxide (H2O2); Metal accumulation; pCeMT; Transgenic tobacco

Categories

Funding

  1. Priority Research Centers Program through the National Research Foundation of Korea (NRF)
  2. Ministry of Education, Science and Technology [2011-0018393]
  3. World Class University project of the Ministry of Science and Technology of Korea [R31-2009-000-20025-0]

Ask authors/readers for more resources

Metallothioneins (MTs) play a major role in metal homeostasis and/or detoxification in plants. In this study, a novel gene, pCeMT, was isolated from Colocasia esculenta and characterized. Our results indicate that Escherichia coli cells expressing pCeMT exhibited enhanced Cd, Cu, and Zn tolerance and accumulation compared with control cells. Furthermore, pCeMT-overexpressing tobacco seedlings displayed better growth under Cd, Cu, and Zn stresses and accumulated more Cd and Zn compared with the wild type. Interestingly, transgenic tobacco displayed markedly decreased hydrogen peroxide (H2O2) and lipid peroxidation levels under Cd, Cu, and Zn treatments. These results suggest that pCeMT could play an important role in the protection of plant cells from oxidative stress by reactive oxygen species (ROS) scavenging and in the detoxification of free metals by metal binding, leading to improved plant metal tolerance. (C) 2013 Elsevier Masson SAS. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
Article Plant Sciences

CmCML11 interacts with CmCAMTA5 to enhance γ-aminobutyric acid (GABA) accumulation by regulating GABA shunt in fresh-cut cantaloupe

Wanli You, Jinglin Zhang, Xueyin Ru, Feng Xu, Zhengguo Wu, Peng Jin, Yonghua Zheng, Shifeng Cao

Summary: This study investigated the effect of calcium chloride (CaCl2) treatment on GABA accumulation in fresh-cut cantaloupe and the underlying mechanisms. The results showed that CaCl2 treatment increased GABA content and the activities of GAD and SSADH enzymes, while reducing glutamate content and GABA-T activity. Additionally, CaCl2 treatment upregulated the expressions of CmCML11 and CmCAMTA5, as well as several GABA shunt genes, through the transcriptional activation by CmCAMTA5. Furthermore, the interaction between CmCML11 and CmCAMTA5 enhanced the transcriptional activation of GABA shunt genes. Overall, this study reveals that CaCl2 treatment promotes GABA accumulation in fresh-cut cantaloupe through the combined effect of CmCML11 and CmCAMTA5 in regulating the expressions of GABA shunt genes.

PLANT PHYSIOLOGY AND BIOCHEMISTRY (2024)

Article Plant Sciences

Integrated physiological, biochemical, and transcriptomics analyses reveal the underlying mechanisms of high nitrogen use efficiency of black sesame

Min Wang, Yupeng Wang, Xiaohui Wang, Guangwei Wei, Huiyi Yang, Xi Yang, Tinghai Shen, Huijie Qu, Sheng Fang, Ziming Wu

Summary: This study identified the high nitrogen use efficiency (NUE) black sesame variety 17-156 and analyzed its underlying physiological and molecular mechanisms. The results showed that 17-156 possesses a sophisticated nitrogen metabolizing machinery to uptake and assimilate higher quantities of inorganic nitrogen, simultaneously improving carbon metabolism and growth. Many important genes were up-regulated in 17-156 under high nitrogen condition. Additionally, 38 potential candidate genes were identified for future studies to improve sesame's NUE. These findings provide valuable resources for understanding the regulatory network of nitrogen metabolism and developing sesame cultivars with improved NUE.

PLANT PHYSIOLOGY AND BIOCHEMISTRY (2024)

Article Plant Sciences

Occurrence, structure, and function of short cells in maize leaf epidermis

He Dong, Chongmei Xu, Chengtao Zhang, Li Zhang, Yaqin Yao, Suiqi Zhang

Summary: The study found that short cells in maize leaves not only improve leaf mechanical support and photosynthetic performance, enhance drought resistance, but also participate in stomatal regulation.

PLANT PHYSIOLOGY AND BIOCHEMISTRY (2024)

Article Plant Sciences

Phosphate deficiency responsive TaSPX3 is involved in the regulation of shoot phosphorus in Arabidopsis plants

Na Liu, Wenyan Shang, Mengxin Guan, Jibin Xiao, Guangxiang Tian, Baozhan Ma, Wenjing Shang, Xu Li, Shijia Zhao, Chuang Li, Kun Cheng, Wenming Zheng

Summary: This study cloned the full-length cDNA sequence of TaSPX3 gene in wheat and found that TaSPX3 responds to low phosphorus stress in multiple wheat genotypes. Overexpressing TaSPX3 can alleviate phosphorus deficiency symptoms and promote plant growth in Arabidopsis. The study also revealed the interaction of TaSPX3 with other genes related to the phosphorus starvation signaling pathway.

PLANT PHYSIOLOGY AND BIOCHEMISTRY (2024)

Article Plant Sciences

Selenite reduced cadmium uptake, interfered signal transduction of endogenous phytohormones, and stimulated secretion of tartaric acid based on a combined analysis of non-invasive micro-test technique, transcriptome and metabolome

Kongyuan Wu, Lizhen Wang, Zihan Wu, Ziqing Liu, Zengfei Li, Jun Shen, Shengjie Shi, Hong Liu, Christopher Rensing, Renwei Feng

Summary: Selenium (Se) can reduce uptake and translocation of cadmium (Cd) in plants by regulating root morphology. This study investigated the effects of Se(IV) on root exudates, root morphology, root endogenous hormones, and Cd uptake efficiency in rice under Cd stress. The results showed that Se(IV) significantly reduced Cd concentrations in shoots and roots, and decreased Cd uptake efficiency via root hairs. Se(IV) also affected root morphology, root exudates, and the synthesis of hormones like IAA and JA. However, transcriptome analysis revealed no upregulated differentially expressed genes (DEGs) in IAA synthesis.

PLANT PHYSIOLOGY AND BIOCHEMISTRY (2024)

Article Plant Sciences

Cell number regulator 8 from Salix linearistipularis enhances cadmium tolerance in poplar by reducing cadmium uptake and accumulation

Di Wang, Huaifang Zhang, Xuefei Hu, Haizhen Zhang, Shuang Feng, Aimin Zhou

Summary: This study identified a cell number regulator gene called SlCNR8 in willow, which enhances resistance to trace metals in transgenic poplar seedlings. SlCNR8 reduces Cd uptake and accumulation, and can be used as a candidate gene for genetic improvement of phytostabilisation of trace metals.

PLANT PHYSIOLOGY AND BIOCHEMISTRY (2024)