4.5 Article

Efficient somatic embryogenesis and Agrobacterium-mediated transformation of pothos (Epipremnum aureum) 'Jade'

Journal

PLANT CELL TISSUE AND ORGAN CULTURE
Volume 114, Issue 2, Pages 237-247

Publisher

SPRINGER
DOI: 10.1007/s11240-013-0319-x

Keywords

Agrobacterium tumefaciens; GFP; Epipremnum aureum; Somatic embryogenesis; Transgenic pothos

Ask authors/readers for more resources

Leaf and petiole explants of monocotyledonous pothos (Epipremnum aureum) 'Jade' were cultured on Murashige and Skoog basal medium supplemented with N-(2-chloro-4-pyridl)-N'-phenylurea (CPPU) or N-phenyl-N'-1,2,3-thiadiazol-5-ylurea (TDZ) with alpha-naphthalene acetic acid (NAA). Somatic embryos appeared directly from explants after 4-8 weeks of culture; 9.1 mu M TDZ with 1.1 mu M NAA induced 61.1 % leaf discs and 94.4 % of petiole segments to produce plantlets through embryo conversion. Using this established regeneration method and an enhanced green fluorescent protein (GFP) gene (egfp) as a reporter marker, an Agrobacterium-mediated transformation procedure was developed. Leaf discs and petiole segments were inoculated with Agrobacterium tumefaciens strain EHA105 harboring a binary vector pLC902 that contains novel bi-directional duplex promoters driving the egfp gene and hygromycin phosphotransferase gene (hpt), respectively. The explants were co-cultivated with strain EHA105 for 3, 5, and 7 days, respectively prior to selective culture with 25 mg l(-1) hygromycin. A 5-day co-cultivation led to 100 % of leaf discs to show transient GFP expression and 23.8 % of the discs to produce stable GFP-expressing somatic embryos. A 7-day co-cultivation of petiole explants resulted in the corresponding responses at 100 and 14.3 %, respectively. A total of 237 transgenic plants were obtained, and GFP fluorescence was observed in all plant organs. Regular PCR and quantitative real-time PCR analyses confirmed the presence of 1 or 2 copies of the egfp gene in analyzed plants. The highly efficient regeneration and transformation systems established in this study may enable genetic improvement of this vegetatively propagated species through biotechnological means.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available