4.5 Article

Physiological responses to salt stress of T2 alfalfa progenies carrying a transgene for betaine aldehyde dehydrogenase

Journal

PLANT CELL TISSUE AND ORGAN CULTURE
Volume 108, Issue 2, Pages 191-199

Publisher

SPRINGER
DOI: 10.1007/s11240-011-0027-3

Keywords

BADH gene; Transgenic alfalfa; Salt tolerance

Funding

  1. Good Breeds Extension Program of Shandong Province

Ask authors/readers for more resources

Glycinebetaine is an important quaternary ammonium compound generated in response to salt and other osmotic stresses in many organisms. Its synthesis requires the catalysis of betaine aldehyde dehydrogenase encoded by a Betaine Aldehyde Dehydrogenase (BADH) gene that converts betaine aldehyde into glycinebetaine in some halotolerant plants. In this study, a BADH gene was over expressed in transgenic alfalfa (Medicago sativa L) plants using Agrobacterium-mediated transformation. Transgenic alfalfa plants grown under 9aEuro degrees NaCl grew well; while non-transgenic control plants turned yellowish in color, wilted, and eventually died. Polymerase chain reaction (PCR) and Northern blot hybridization analyses demonstrated that the BADH gene was transferred into the T2 generation and segregated in a Mendelian fashion. Transgenic alfalfa plants expressing BADH showed significantly higher BADH enzyme activity and betaine contents when grown under 6aEuro degrees NaCl. Moreover, proline content in T2 lines were higher while electrolyte leakage and malonaldehyde content were lower in T2 lines compared with non-transgenic plants. These findings indicated that transgenic plants expressing BADH transgene exhibited higher salt tolerance than non-transgenic plants.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available