4.7 Article

Translocation of cell-penetrating peptides and delivery of their cargoes in triticale microspores

Journal

PLANT CELL REPORTS
Volume 28, Issue 5, Pages 801-810

Publisher

SPRINGER
DOI: 10.1007/s00299-009-0692-4

Keywords

Cell-penetrating peptide; Microspore; Protein transduction; Transfection; Triticale

Categories

Funding

  1. Natural Science and Engineering Research Council of Canada (NSERC)
  2. Alberta Agriculture Research Institute (AARI)

Ask authors/readers for more resources

Microspore culture is contributing significantly in the field of plant breeding for crop improvement in general and cereals, in particular. In the present study, we investigated the uptake of fluorescently labeled cell-penetrating peptides (CPP; Tat, Tat(2), M-Tat, peptide vascular endothelial-cadherin, transportan) in the freshly isolated triticale microspores (mid-late uninucleate stage). We demonstrated that Tat (RKKRRQRRR) and Tat(2) (RKKRRQRRRRKKRRQRRR) are able to efficiently transduce GUS enzyme (272 kDa) in its functional form in 5 and 14% of the microspores, respectively, in a noncovalent manner. Pep-1, a synthetic CPP, was able to transduce GUS enzyme in its active form in 31% of the microspores. The effect of various endocytic and macropinocytic inhibitors on Tat(2)-mediated GUS enzyme delivery was studied and revealed a preferred micropinocytosis entry. DNase I protection assay and confocal laser microscopy was carried out to recommend a ratio of 4:1 Tat(2)-linear plasmid DNA (pActGUS) in complex preparation for microspore transfection. We further show that Tat(2) can successfully deliver GUS gene in near to 2% triticale microspores. The negative control mutated Tat (M-Tat: AKKRRQRRR) failed to transducer the GUS protein and transfect the GUS gene in microspore nucleus. The ability of CPPs to deliver macromolecules (protein as well as linear plasmid DNA) noncovalently has been demonstrated in triticale isolated microspores. It further confirms potential applications of CPPs in developing simple, time saving, cost effective plant genetic engineering technologies.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available