4.6 Article

Model-based fault detection for generator cooling system in wind turbines using SCADA data

Journal

WIND ENERGY
Volume 19, Issue 4, Pages 593-606

Publisher

WILEY-BLACKWELL
DOI: 10.1002/we.1852

Keywords

SCADA data; extended Kalman filter; model-based fault detection; wind turbine; validation on real data

Funding

  1. Vattenfall RD
  2. Danish Agency for Science Technology and Innovation

Ask authors/readers for more resources

In this work, an early fault detection system for the generator cooling of wind turbines is presented and tested. It relies on a hybrid model of the cooling system. The parameters of the generator model are estimated by an extended Kalman filter. The estimated parameters are then processed by an appropriate statistical change detection algorithm in order to detect faults in the cooling system. To validate the method, it has been tested on 3years of historical data from 43 turbines. During the testing period, 16 faults occurred; 15 of these were detected by the developed method, and one false alarm was issued. This is an improvement compared with the current system that gives 15 detections and more than 10 false alarms. In some cases, the method detects the fault a long time before the turbine reports an alarm. A further advantage of the method is that it is based on supervisory control and data acquisition data that are available for the operator of all modern turbines. Thereby, the method can be implemented without the need to modify or install additional components in the turbines. Copyright (c) 2015 John Wiley & Sons, Ltd.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
Article Energy & Fuels

Generalized filtered lifting line theory for arbitrary chord lengths and application to wind turbine blades

Luis A. Martinez-Tossas, Philip Sakievich, Matthew J. Churchfield, Charles Meneveau

Summary: This work revisits the filtered lifting line theory and provides a more general formulation for solving flow problems with significant changes in chord, such as wind turbine blades.

WIND ENERGY (2024)