4.7 Article

Simple models and concepts as tools for the study of sustained soil productivity in long-term experiments. I. New soil organic matter and residual effect of P from fertilizers and farmyard manure in Kabete, Kenya

Journal

PLANT AND SOIL
Volume 339, Issue 1-2, Pages 3-16

Publisher

SPRINGER
DOI: 10.1007/s11104-010-0587-8

Keywords

Agronomic nutrient use efficiency; Kikuyu red clay; Physiological nutrient use efficiency; 'Young' soil organic matter

Ask authors/readers for more resources

The rough outcomes of a long-term experiment in Kenya were (re-)interpreted using simple models to find causes of success or failure with regard to sustained soil productivity. A two- pools model calculated the development of soil organic matter, and a practical equation estimated the residual effect of fertilizer P. Relative mineralization rate was 4 and 8% y(-1) for original and newly formed soil organic carbon (SOC). Maize yielded 0.25 and 1.1 t ha(-1) per g kg(-1) of original and new SOC, respectively. Yields of fertilized maize increased initially as a result of increasing residual effects of applied P, but decreased later presumably because SOC declined to below a critical level of 16 g kg(-1). To maintain SOC above this level, about 10 tons of farmyard manure (dry matter) must be applied annually. Agronomic nutrient use efficiencies for fertilizer N and P were low, but the residual effect of P was high. The simple model outlined half a century ago adequately calculated build-up of new soil organic matter. The estimated residual effect of fertilizer P explained increasing crop responses to repeated P applications. The absence of data on nutrient uptake by the crop strongly limited the understanding of the experimental results.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available