4.7 Article

Functional Analysis of Ion Transport Properties and Salt Tolerance Mechanisms of RtHKT1 from the Recretohalophyte Reaumuria trigyna

Journal

PLANT AND CELL PHYSIOLOGY
Volume 60, Issue 1, Pages 85-106

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/pcp/pcy187

Keywords

High-affinity potassium transporter; Ion homeostasis; Ion transport properties; Osmotic regulation; Reaumuria trigyna; Salt-tolerant transgenic Arabidopsis

Funding

  1. National Natural Science Foundation of China [31760700, 31360063]
  2. Natural Science Foundation Key Project of Inner Mongolia Autonomous Region [2015ZD03]

Ask authors/readers for more resources

Reaumuria trigyna is an endangered recretohalophyte and a small archaic feral shrub that is endemic to arid and semi-arid plateau regions of Inner Mongolia, China. Based on transcriptomic data, we isolated a high-affinity potassium transporter gene (RtHKT1) from R. trigyna, which encoded a plasma membrane-localized protein. RtHKT1 was rapidly up-regulated by high Na+ or low K+ and exhibited different tissue-specific expression patterns before and after stress treatment. Transgenic yeast showed tolerance to high Na+ or low K+, while transgenic Arabidopsis exhibited tolerance to high Na+ and sensitivity to high K+, or high Na+-low K+, confirming that Na+ tolerance in transgenic Arabidopsis depends on a sufficient external K+ concentration. Under external high Na+, high K+ and low K+ conditions, transgenic yeast accumulated more Na+-K+, Na+ and K+, while transgenic Arabidopsis accumulated less Na+-more K+, more Na+ and more Na+-K+, respectively, indicating that the ion transport properties of RtHKT1 depend on the external Na+-K+ environment. Salt stress induced up-regulation of some ion transporter genes (AtSOS1/AtHAK5/AtKUP5-6), as well as down-regulation of some genes (AtNHX1/AtAVP1/AtKUP9-12), revealing that multi-ion-transporter synergism maintains Na+/K+ homeostasis under salt stress in transgenic Arabidopsis. Overexpression of RtHKT1 enhanced K+ accumulation and prevented Na+ transport from roots to shoots, improved biomass accumulation and Chl content in salt-stressed transgenic Arabidopsis. The proline content and relative water content increased significantly, and some proline biosynthesis genes (AtP5CS1 and AtP5CS2) were also up-regulated in salt-stressed transgenic plants. These results suggest that RtHKT1 confers salt tolerance on transgenic Arabidopsis by maintaining Na+/K+ homeostasis and osmotic homeostasis.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available