4.3 Article

Water ice in the dark dune spots of Richardson crater on Mars

Journal

PLANETARY AND SPACE SCIENCE
Volume 59, Issue 1, Pages 26-42

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.pss.2010.10.015

Keywords

Mars; Polar; Ices; Dunes; Water

Funding

  1. ESA [98076]
  2. Centre National d'Etudes Spatiales (CNES)
  3. Programme National de Planetologie (CNRS/INSU)

Ask authors/readers for more resources

Interfacial liquid water has been hypothesized to form during the seasonal evolution of the dark dune spots observed in the high latitudes of Mars. In this study we assess the presence, nature and properties of ices - in particular water ice - that occur within these spots using HIRISE and CRISM observations, as well as the LMD Global Climate Model. Our studies focus on Richardson crater (72 degrees S, 179 degrees E) and cover southern spring and summer (L-S=175-341 degrees). Three units have been identified of these spots: dark core, gray ring and bright halo. Each unit show characteristic changes as the season progress. In winter, the whole area is covered by CO2 ice with H2O ice contamination. Dark spots form during late winter and early spring. During spring, the dark spots are located in a 10 cm thick depression compared to the surrounding bright ice-rich layer. They are spectrally characterized by weak CO2 ice signatures that probably result from spatial mixing of CO2 ice-rich and ice-free regions within pixels, and from mixing of surface signatures due to aerosols scattering. The bright halo shaped by winds shows stronger CO2 absorptions than the average ice-covered terrain, which is consistent with a formation process involving CO2 re-condensation. According to spectral, morphological and modeling considerations, the gray ring is composed of a thin layer of a few tens of mu m of water ice. Two sources/processes could participate to the enrichment of water ice in the gray ring unit: (i) water ice condensation at the surface in early fall (prior to the condensation of a CO2-rich winter layer) or during wintertime (due to cold trapping of the CO2 layer) and (ii) ejection of dust grains surrounded by water ice by the geyser activity responsible for the dark spot. In any case, water ice remains longer in the gray ring unit after the complete sublimation of the CO2. Finally, we also looked for liquid water in the near-IR CRISM spectra using linear unmixing modeling but found no conclusive evidence for it. (C) 2010 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available