4.5 Article

Electrical stimulation of the isolated rat intestine in the presence of nutrient stimulus enhances glucagon-like peptide-1 release

Journal

PHYSIOLOGICAL MEASUREMENT
Volume 31, Issue 9, Pages 1147-1159

Publisher

IOP PUBLISHING LTD
DOI: 10.1088/0967-3334/31/9/006

Keywords

electrical field stimulation; hormone; obesity; enteroendocrine cell; linoleic acid

Ask authors/readers for more resources

The release of small intestinal hormones by constituents of ingested food, such as fatty acids, is integral to post-prandial responses that reduce food intake. Recent evidence suggests that small intestinal electrical stimulation reduces food intake, although the mechanism of action is debated. To test the hypothesis that intestinal stimulation directly alters hormone release locally we used isolated rat distal ileum and measured glucagon-like peptide-1 (GLP-1) released in the presence or absence of linoleic acid (LA) and electrical field stimulation (EFS). Intact segments were oriented longitudinally between bipolar stimulating electrodes in organ bath chambers containing modified Krebs-Ringers bicarbonate (KRB) buffer including protease inhibitors. Incubation in LA (3 mg ml(-1)) for 45 min increased GLP-1 concentration (21.9 +/- 2.6 pM versus KRB buffer alone 3.6 +/- 0.1 pM). Eleven electrical stimulation conditions were tested. In the presence of LA none of the stimulation conditions inhibited LA-evoked GLP-1 release, whereas two high frequency short pulse widths (14 V, 20 Hz, 5 ms and 14 V, 40 Hz, 5 ms) and one low frequency long pulse width (14 V, 0.4 Hz, 300 ms) EFS conditions enhanced LA-evoked GLP-1 release by > 250%. These results are consistent with a local effect of intestinal electrical stimulation to enhance GLP-1 release in response to luminal nutrients in the intestines. Enhancing hormone release could improve the efficacy of intestinal electrical stimulation and provide a potential treatment for obesity and metabolic conditions.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available