4.5 Article

Inflammation-dependent expression of SPARC during development of chronic pancreatitis in WBN/Kob rats and a microarray gene expression analysis

Journal

PHYSIOLOGICAL GENOMICS
Volume 38, Issue 2, Pages 196-204

Publisher

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/physiolgenomics.00028.2009

Keywords

expression profiling; secreted protein; acidic; and rich in cysteines; immunohistochemistry

Funding

  1. Swiss National Science Foundation
  2. Amelie Waring Foundation
  3. Velux Foundation

Ask authors/readers for more resources

Reding T, Wagner U, Silva AB, Sun L, Bain M, Kim SY, Bimmler D, Graf R. Inflammation-dependent expression of SPARC during development of chronic pancreatitis in WBN/Kob rats and a microarray gene expression analysis. Physiol Genomics 38: 196-204, 2009. First published May 12, 2009; doi: 10.1152/physiolgenomics.00028.2009.-The pathophysiology of human chronic pancreatitis is not well understood and difficult to follow on a molecular basis. Therefore, we used a rat model [Wistar-Bonn/Kobori (WBN/Kob)] that exhibits spontaneous chronic inflammation and fibrosis in the pancreas. Using microarrays we compared gene expression patterns in the pancreas during development of inflammation and fibrosis of WBN/Kob rats with age-matched healthy Wistar rats. The extracellular matrix protein SPARC (secreted protein, acidic, and rich in cysteines) and other transcripts of inflammatory genes were quantified by real-time PCR, and some were localized by immunohistochemistry. When pancreatic inflammation becomes obvious at the age of 16 wk, several hundred genes are increased between 3- and 50-fold in WBN/Kob rats compared with healthy Wistar rats. Proteins produced by acinar cells and characteristic for inflammation, e. g., pancreatitis-associated protein, are highly upregulated. Other proteins, derived from infiltrating inflammatory cells and from activated stellate cells (fibrosis) such as collagens and fibronectins are also significantly upregulated. SPARC was localized to acinar cells where it increased in the vicinity of inflammatory foci. However, acinar expression of SPARC was lost during destruction of acinar cells. In human pancreatic specimens with chronic pancreatitis, SPARC exhibited a similar expression profile. During chronic inflammation and fibrosis in the WBN/Kob rat, inflammatory genes, growth factors, and structural genes exhibit a high increase of expression. A temporal profile including pre- and postinflammatory phases indicates a concurrent activation of inflammatory and fibrotic changes. Inflammation dependent expression of SPARC appears to be lost during acinar-to-duct metaplasia both in rat and human pancreas.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available