4.7 Article

A new particle interaction mixing model for turbulent dispersion and turbulent reactive flows

Journal

PHYSICS OF FLUIDS
Volume 22, Issue 3, Pages -

Publisher

AIP Publishing
DOI: 10.1063/1.3327288

Keywords

-

Ask authors/readers for more resources

Probability density function (PDF) methods are an established tool applied for the simulation of turbulent mixing and turbulent reactive flows. Mixing models are required to close the molecular diffusion term in the PDF transport equation. From the nature of molecular diffusion, several requirements or design criteria can be derived for mixing models. All current models have certain shortcomings with respect to these requirements. A new mixing model is presented which fully satisfies almost all requirements. It conserves the mean of an inert scalar, reduces its scalar variance, and relaxes closely to a Gaussian scalar PDF. Multiple inert scalars without differential diffusion effects evolve independently and are kept bounded within their allowable region. Mixing is conditional on the velocity and particle scalar trajectories are continuous in time leading to a model that is local in a weak sense. Validation tests show that the model can reproduce differential diffusion effects and mixing rate dependencies due to variable initial scalar length scales or Reynolds and Schmidt number variations. (C) 2010 American Institute of Physics. [doi: 10.1063/1.3327288]

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available