4.7 Article

Inflation in entropic cosmology: Primordial perturbations and non-Gaussianities

Journal

PHYSICS LETTERS B
Volume 697, Issue 4, Pages 280-287

Publisher

ELSEVIER
DOI: 10.1016/j.physletb.2011.02.020

Keywords

Inflation; Holographic principle

Funding

  1. Arizona State University Cosmology Initiative

Ask authors/readers for more resources

We investigate thermal inflation in double-screen entropic cosmology. We find that its realization is general, resulting from the system evolution from non-equilibrium to equilibrium. Furthermore, going beyond the background evolution, we study the primordial curvature perturbations arising from the universe interior, as well as from the thermal fluctuations generated on the holographic screens. We show that the power spectrum is nearly scale-invariant with a red tilt, while the tensor-to-scalar ratio is in agreement with observations. Finally, we examine the non-Gaussianities of primordial curvature perturbations, and we find that a sizable value of the non-linearity parameter is possible due to holographic statistics on the outer screen. (C) 2011 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

Article Physics, Particles & Fields

Observational constraints on soft dark energy and soft dark matter: Challenging ACDM cosmology

Emmanuel N. Saridakis, Weiqiang Yang, Supriya Pan, Fotios K. Anagnostopoulos, Spyros Basilakos

Summary: Soft cosmology extends the standard cosmology by allowing for different equation-of-state parameters for dark matter and dark energy at different scales. Data analysis suggests that soft cosmology is favored by observational constraints.

NUCLEAR PHYSICS B (2023)

Article Astronomy & Astrophysics

Future Prospects on Constraining Neutrino Cosmology with the Ali CMB Polarization Telescope

Dongdong Zhang, Jia-Rui Li, Jiaqi Yang, Yufei Zhang, Yi-Fu Cai, Wenjuan Fang, Chang Feng

Summary: We use the Ali Cosmic Microwave Background Polarization Telescope (AliCPT) to forecast the constraints on neutrino physics parameters using the Cosmic Microwave Background (CMB) temperature, E-mode polarization, and lensing spectra. Our numerical simulations show that AliCPT can achieve a precision of sigma(N (eff)) = 0.56 and M (nu) < 1.10 eV (95% CL.) for the first year of observation, based on TT, TE, EE, and CMB lensing power spectra. We also investigate how instrumental parameters such as noise level, FWHM, and sky coverage affect these constraints on neutrino parameters.

ASTROPHYSICAL JOURNAL (2023)

Article Astronomy & Astrophysics

Prospects of probing dark matter condensates with gravitational waves

Shreya Banerjee, Sayantani Bera, David F. Mota

Summary: The Lambda-Cold Dark Matter model is currently the most accurate model for explaining cosmological observations, but there are still issues at galactic scales. Various models of dark matter, such as superfluid dark matter, Bose-Einstein Condensate (BEC) dark matter, and fuzzy dark matter, have been proposed to address these shortcomings. This study investigates these models using the constraint on gravitational wave propagation speed from the detection of the binary neutron star GW170817 by the LIGO-Virgo detector network. The findings suggest that the fuzzy dark matter model is the most feasible scenario to be tested in the near future, especially with detection frequencies < 10-9 Hz.

JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS (2023)

Article Astronomy & Astrophysics

Primordial black holes and gravitational waves from non-canonical inflation

Theodoros Papanikolaou, Andreas Lymperis, Smaragda Lola, Emmanuel N. Saridakis

Summary: Primordial black holes (PBHs) can be formed through non-canonical inflation, and can provide observational evidence of the early Universe. Constraints on the non-canonical exponents are extracted by requiring significant PBH production. Asteroid-mass PBHs can explain the dark matter, and solar-mass PBHs within the LIGO-VIRGO detection band can be produced. The collapse of enhanced cosmological perturbations that form PBHs can also generate a detectable stochastic gravitational wave (GW) background.

JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS (2023)

Article Physics, Multidisciplinary

New anisotropic star solutions in mimetic gravity

G. G. L. Nashed, Emmanuel N. Saridakis

Summary: In this study, new classes of anisotropic solutions are extracted within the framework of mimetic gravity. By applying the Tolman-Finch-Skea metric and a specific anisotropy unrelated to it, and smoothly matching the interior solution to the exterior Schwarzschild solution, the authors investigate various properties of these solutions. The results show positive energy density, decreasing pressures towards the center of the star, repulsive anisotropic force, and monotonically increasing equation-of-state parameters. The stability of the solutions is also examined, and it is found that the stars in all cases are stable.

EUROPEAN PHYSICAL JOURNAL PLUS (2023)

Article Chemistry, Multidisciplinary

Direct Evidence for Synchronicity between Rotation along Cα-C′ and Pyramidalization of C′ in Amides

Shreya Banerjee, Sunil K. Gupta, Erode N. Prabhakaran

Summary: The presence of sinusoidal synchronicity between rotational motion along C-alpha-C ' sigma bond and the concomitant pyramidalization of C ' in amides is demonstrated for the first time in solution. It has been found that synchronicity is perturbed when tau-rotation is 'locked' with interactions, resulting in a strain on the amide bond and a decrease in energy barrier for the amide bond cis/trans isomerism by approximately 1.68 kcal/mol.

CHEMISTRYSELECT (2023)

Article Physics, Multidisciplinary

Science with the 2.5-meter Wide Field Survey Telescope (WFST)

Tinggui Wang, Guilin Liu, Zhenyi Cai, Jinjun Geng, Min Fang, Haoning He, Ji-an Jiang, Ning Jiang, Xu Kong, Bin Li, Ye Li, Wentao Luo, Zhizheng Pan, Xuefeng Wu, Ji Yang, Jiming Yu, Xianzhong Zheng, Qingfeng Zhu, Yi-Fu Cai, Yuanyuan Chen, Zhiwei Chen, Zigao Dai, Lulu Fan, Yizhong Fan, Wenjuan Fang, Zhicheng He, Lei Hu, Maokai Hu, Zhiping Jin, Zhibo Jiang, Guoliang Li, Fan Li, Xuzhi Li, Runduo Liang, Zheyu Lin, Qingzhong Liu, Wenhao Liu, Zhengyan Liu, Wei Liu, Yao Liu, Zheng Lou, Han Qu, Zhenfeng Sheng, Jianchun Shi, Yiping Shu, Zhenbo Su, Tianrui Sun, Hongchi Wang, Huiyuan Wang, Jian Wang, Junxian Wang, Daming Wei, Junjie Wei, Yongquan Xue, Jingzhi Yan, Chao Yang, Ye Yuan, Yefei Yuan, Hongxin Zhang, Miaomiao Zhang, Haibin Zhao, Wen Zhao

Summary: The Wide Field Survey Telescope (WFST) is a dedicated photometric surveying facility being built jointly by University of Science and Technology of China (USTC) and the Purple Mountain Observatory (PMO). It is equipped with a 2.5-meter diameter primary mirror and a mosaic CCD camera, and it will scan the northern sky in four optical bands to detect transient phenomena and study the variability of Galactic and extragalactic objects.

SCIENCE CHINA-PHYSICS MECHANICS & ASTRONOMY (2023)

Article Astronomy & Astrophysics

Alleviating the H0 Tension in Scalar-Tensor and Bi-Scalar-Tensor Theories

Maria Petronikolou, Emmanuel N. Saridakis

Summary: In this study, we investigate scalar-tensor and bi-scalar-tensor modified theories of gravity that can alleviate the H-0 tension. We show that by choosing particular models with specific features, such as a shift-symmetric friction term or phantom behavior of the effective dark-energy equation-of-state parameter, the tension can be alleviated. These theories provide known mechanisms for alleviating the H0 tension.

UNIVERSE (2023)

Article Astronomy & Astrophysics

Alleviating the H0 tension with new gravitational scalar tensor theories

Shreya Banerjee, Maria Petronikolou, Emmanuel N. Saridakis

Summary: We investigate the cosmological applications of gravitational scalar-tensor theories and analyze them in the context of the H0 tension. Two specific models are explored, showing negligible effects at high redshifts but an increasing deviation as time passes. At low redshifts, the Hubble parameter takes on higher values in a controlled manner. This behavior is attributed to the phantom nature of the effective dark-energy equation-of-state parameter, providing a possible solution to the H0 tension. Comparison with cosmic chronometer data demonstrates full agreement within 1σ confidence level.

PHYSICAL REVIEW D (2023)

Article Astronomy & Astrophysics

Modified gravity and cosmology with nonminimal direct or derivative coupling between matter and the Einstein tensor

Petros Asimakis, Spyros Basilakos, Andreas Lymperis, Maria Petronikolou, Emmanuel N. Saridakis

Summary: This study constructs new classes of modified theories that couple the matter sector with the Einstein tensor, specifically considering direct couplings to the energy-momentum tensor and its trace derivatives. The general field equations, without higher-order derivatives, are derived and applied in a cosmological framework, resulting in Friedmann equations with additional terms that give rise to an effective dark energy sector. The study shows successful description of the thermal history of the universe at the background level, with matter and dark energy epochs, and the dark energy equation-of-state parameter can approach -1 as time progresses. Comparison with cosmic chronometer data demonstrates a very good agreement. Detailed investigations of scalar and tensor perturbations validate the predicted behavior of the matter overdensity.

PHYSICAL REVIEW D (2023)

Article Chemistry, Multidisciplinary

A self-healable metallohydrogel for drug encapsulations and drug release

Mita Dutta, Shreya Banerjee, Mahitosh Mandal, Manish Bhattacharjee

Summary: A self-healable metallohydrogel of Mn(ii) has been successfully prepared using a low molecular weight gelator, Na2HL. It has been characterized by various techniques and encapsulated with drugs IND and GEM. The GEM-loaded metallogel showed enhanced delivery and cytotoxicity against breast cancer cells, while the MOG_IND exhibited improved anti-inflammatory response compared to the drug alone.

RSC ADVANCES (2023)

Article Astronomy & Astrophysics

Cosmology in f (Q) gravity: A unified dynamical systems analysis of the background and perturbations

Wompherdeiki Khyllep, Jibitesh Dutta, Emmanuel N. Saridakis, Kuralay Yesmakhanova

Summary: Motivated by the success of f(Q) gravity in fitting observational data, we analyze the behavior of two studied f(Q) models, power-law and exponential, through dynamical system analysis. We find that both models have a matter-dominated saddle point followed by a stable dark-energy-dominated accelerated universe. The models fit observational data well and can be considered as promising alternatives to the ACDM concordance model.

PHYSICAL REVIEW D (2023)

Article Physics, Particles & Fields

Perturbations in non-flat cosmology for f(T) gravity

Sebastian Bahamonde, Konstantinos F. Dialektopoulos, Manuel Hohmann, Jackson Levi Said, Christian Pfeifer, Emmanuel N. Saridakis

Summary: This study focuses on the cosmological perturbation theory in f(T) gravity, which is a simple extension of the teleparallel equivalent of general relativity. The authors examine the possibility of a non-flat FLRW background solution and perform perturbations for different spatial geometries. They determine the behavior of the perturbative modes in this non-flat FLRW setting for arbitrary f(T) models and identify propagating modes.

EUROPEAN PHYSICAL JOURNAL C (2023)

Article Astronomy & Astrophysics

Microlensing effect of a charged spherically symmetric wormhole

Lei-Hua Liu, Mian Zhu, Wentao Luo, Yi-Fu Cai, Yi Wang

Summary: We systematically investigate the microlensing effect of a charged spherically symmetric wormhole, where the light source is remote from the throat. The numerical result shows that the range of total magnification is from 105 to 10-2 depending on various metrics. Our theoretical investigation could shed new light on exploring the wormhole with the microlensing effect.

PHYSICAL REVIEW D (2023)

Article Astronomy & Astrophysics

The effective field theory approach to the strong coupling issue in f(T) gravity

Yu-Min Hu, Yaqi Zhao, Xin Ren, Bo Wang, Emmanuel N. Saridakis, Yi-Fu Cai

Summary: This study investigates the scalar perturbations and possible strong coupling issues of f(T) gravity using the effective field theory (EFT) approach. The generalized EFT framework of modified teleparallel gravity is revisited and applied to examine both linear and second-order perturbations in f(T) theory. The results suggest that there is no new scalar mode present in f(T) gravity, indicating a strong coupling problem. However, an estimation of the strong coupling scale based on the ratio of cubic to quadratic Lagrangians shows that the strong coupling problem can be avoided for certain modes.

JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS (2023)

Article Astronomy & Astrophysics

Inhomogeneity of a rotating quark-gluon plasma from holography

Nelson R. F. Braga, Octavio C. Junqueira

Summary: This study investigates the influence of rotation on the transition temperature of strongly interacting matter produced in non-central heavy ion collisions. By using a holographic description of an AdS black hole, the authors extend the analysis to the more realistic case where the matter spreads over a region around the rotational axis. The results show the coexistence of confined and deconfined phases and are consistent with the concept of local temperature in rotating frames developed by Tolman and Ehrenfest.

PHYSICS LETTERS B (2024)

Article Astronomy & Astrophysics

Constrain the time variation of the gravitational constant via the propagation of gravitational waves

Bing Sun, Jiachen An, Zhoujian Cao

Summary: This paper investigates the effect of gravitational constant variation on the propagation of gravitational waves. By employing two analytical methods, the study finds that variations in the gravitational constant result in amplitude and phase corrections for gravitational waves, and the time variation of the gravitational constant can be constrained through the propagation of gravitational waves.

PHYSICS LETTERS B (2024)

Article Astronomy & Astrophysics

Quantum tunneling from Schwarzschild black hole in non-commutative gauge theory of gravity

Abdellah Touati, Zaim Slimane

Summary: This letter presents the first study of Hawking radiation as a tunneling process within the framework of non-commutative gauge theory of gravity. The non-commutative Schwarzschild black hole is reconstructed using the Seiberg-Witten map and the star product. The emission spectrum of outgoing massless particles is computed using the quantum tunneling mechanism. The results reveal pure thermal radiation in the low-frequency scenario, but a deviation from pure thermal radiation in the high-frequency scenario due to energy conservation. It is also found that noncommutativity enhances the correlations between successively emitted particles.

PHYSICS LETTERS B (2024)

Article Astronomy & Astrophysics

Compact stars: To cross or go around? That is the question

Shahar Hod

Summary: The travel times of light signals between two antipodal points on a compact star's surface are calculated for two different trajectories. It is shown that, for highly dense stars, the longer trajectory along the surface may have a shorter travel time as measured by asymptotic observers. A critical value of the dimensionless density-area parameter is determined for constant density stars to distinguish cases where crossing through the star's center or following a semi-circular trajectory on the surface has a shorter travel time as measured by asymptotic observers.

PHYSICS LETTERS B (2024)