4.5 Article

Squeezed vacuum as a universal quantum probe

Journal

PHYSICS LETTERS A
Volume 373, Issue 10, Pages 934-939

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.physleta.2009.01.026

Keywords

-

Ask authors/readers for more resources

We address local quantum estimation of bilinear Hamiltonians probed by Gaussian states. We evaluate the relevant quantum Fisher information (QFI) and derive the ultimate bound on precision. Upon maximizing the QFI we found that single- and two-mode squeezed vacuum represent an optimal and universal class of probe states, achieving the so-called Heisenberg limit to precision in terms of the overall energy of the probe. We explicitly obtain the optimal observable based on the symmetric logarithmic derivative and also found that homodyne detection assisted by Bayesian analysis may achieve estimation of squeezing with near-optimal sensitivity in any working regime. (C) 2009 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available