4.6 Article

Proof of concept of MRI-guided tracked radiation delivery: tracking one-dimensional motion

Journal

PHYSICS IN MEDICINE AND BIOLOGY
Volume 57, Issue 23, Pages 7863-7872

Publisher

IOP PUBLISHING LTD
DOI: 10.1088/0031-9155/57/23/7863

Keywords

-

Funding

  1. Dutch Technology Foundation STW
  2. Elekta AB, (Stockholm, Sweden)
  3. Philips (Best, The Netherlands)

Ask authors/readers for more resources

In radiotherapy one aims to deliver a radiation dose to a tumour with high geometrical accuracy while sparing organs at risk (OARs). Although image guidance decreases geometrical uncertainties, treatment of cancer of abdominal organs is further complicated by respiratory motion, requiring intra-fraction motion compensation to fulfil the treatment intent. With an ideal delivery system, the optimal method of intra-fraction motion compensation is to adapt the beam collimation to the moving target using a dynamic multi-leaf collimator (MLC) aperture. The many guidance strategies for such tracked radiation delivery tested up to now mainly use markers and are therefore invasive and cannot deal with target deformations or adaptations for OAR positions. We propose to address these shortcomings using the online MRI guidance provided by an MRI accelerator and present a first step towards demonstration of the technical feasibility of this proposal. The position of a phantom subjected to one-dimensional (1D) periodic translation was tracked using a fast 1D MR sequence. Real-time communication with the MR scanner and control of the MLC aperture were established. Based on the time-resolved position of the phantom, tracked radiation delivery to the phantom was realized. Dose distributions for various delivery conditions were recorded on a gafchromic film. Without motion a sharply defined dose distribution is obtained, whereas considerable blur occurs for delivery to a moving phantom. With compensation for motion, the sharpness of the dose distribution is nearly restored. The total latency in our motion management architecture is approximately 200 ms. Combination of the recorded phantom and aperture positions with the planned dose distribution enabled the reconstruction of the delivered dose in all cases, which illustrates the promise of online dose accumulation and confirms that latency compensation could further enhance our results. For a simple 1D tracked delivery scenario, the technical feasibility of MRI-guided tracked radiation delivery is confirmed. More generic tracking scenarios require advanced MRI, leading to increased acquisition time and more challenging image processing problems. Latency compensation is therefore an important subject of future investigations.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available