Journal
PHYSICAL REVIEW LETTERS
Volume 108, Issue 6, Pages -Publisher
AMER PHYSICAL SOC
DOI: 10.1103/PhysRevLett.108.068701
Keywords
-
Categories
Funding
- U.S. DOE, Office of Science, Energy Frontier Research Centers
- U.S. DOE EERE [DE-AC36-08GO28308]
Ask authors/readers for more resources
There are numerous inorganic materials that may qualify as good photovoltaic (PV) absorbers, except that the currently available selection principle-focusing on materials with a direct band gap of similar to 1.3 eV (the Shockley-Queisser criteria)-does not provide compelling design principles even for the initial material screening. Here we offer a calculable selection metric of spectroscopic limited maximum efficiency (SLME)'' that can be used for initial screening based on intrinsic properties alone. It takes into account the band gap, the shape of absorption spectra, and the material-dependent nonradiative recombination losses. This is illustrated here via high-throughput first-principles quasiparticle calculations of SLME for similar to 260 generalized IpIIIqVIr chalcopyrite materials. It identifies over 20 high-SLME materials, including the best known as well as previously unrecognized PV absorbers.
Authors
I am an author on this paper
Click your name to claim this paper and add it to your profile.
Reviews
Recommended
No Data Available