4.7 Article

Concentration-dependent like-charge pairing of guanidinium ions and effect of guanidinium chloride on the structure and dynamics of water from all-atom molecular dynamics simulation

Journal

PHYSICAL REVIEW E
Volume 88, Issue 5, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevE.88.052708

Keywords

-

Funding

  1. Department of Science and Technology (DST), India [SR/S1/PC-60/2009]

Ask authors/readers for more resources

An all-atom molecular dynamics simulation shows concentration-dependent like-charge ion pairing of the guanidinium ion in an aqueous solution of guanidinium chloride. We have observed two types of like-charge ion pairing for guanidinium ions, namely, stacked ion pairs and solvent-separated ion pairs. Interestingly, both of these like-charge ion-pair formations are dependent on the concentration of guanidinium chloride in water. The probability of stacked like-charge ion-pair formation decreases, whereas, the probability of solvent-separated like-charge pairing increases as the concentration of guanidinium chloride increases, which is shown from radial distribution functions and is confirmed from the energy calculations. Besides like-charge ion-pair formation, we also investigated guanidinium chloride induced changes in water structure. Hydrogen-bond analysis indicates that guanidinium chloride does not alter the strict-hydrogen-bonding patterns of water, whereas, it breaks the bend-hydrogen bond and the non-hydrogen-bonding patterns. Tetrahedral order, nearest neighbor orientation, and distance distribution of water molecules around a probe water molecule show the extent of water structure distortion.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available