4.7 Article

Learning-rate-dependent clustering and self-development in a network of coupled phase oscillators

Journal

PHYSICAL REVIEW E
Volume 80, Issue 6, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevE.80.066213

Keywords

Hebbian learning; neurophysiology; synchronisation

Ask authors/readers for more resources

We investigate the role of the learning rate in a Kuramoto Model of coupled phase oscillators in which the coupling coefficients dynamically vary according to a Hebbian learning rule. According to the Hebbian theory, a synapse between two neurons is strengthened if they are simultaneously coactive. Two stable synchronized clusters in antiphase emerge when the learning rate is larger than a critical value. In such a fast learning scenario, the network eventually constructs itself into an all-to-all coupled structure, regardless of initial conditions in connectivity. In contrast, when learning is slower than this critical value, only a single synchronized cluster can develop. Extending our analysis, we explore whether self-development of neuronal networks can be achieved through an interaction between spontaneous neural synchronization and Hebbian learning. We find that self-development of such neural systems is impossible if learning is too slow. Finally, we demonstrate that similar to the acquisition and consolidation of long-term memory, this network is capable of generating and remembering stable patterns.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available