4.7 Article

Analytical model of particle charging in plasmas over a wide range of collisionality

Journal

PHYSICAL REVIEW E
Volume 78, Issue 4, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevE.78.046402

Keywords

-

Funding

  1. NSF [CBET0500332]

Ask authors/readers for more resources

An accurate prediction of the particle charge in plasmas is of fundamental importance for a wide range of problems from the study of dusty or complex plasmas to the controlled synthesis of nanoparticle materials in plasmas. Despite its known deficiencies, the orbital motion limited (OML) theory, which strictly applies only to collisionless plasmas, is the most widely used model to describe particle charging. This paper develops a simple, analytical model to describe the charging of particles in plasmas over a wide range of pressures and particle sizes. In spite of its simplicity, excellent agreement is found with results of a self-consistent molecular dynamics Monte Carlo model and with experimental results found in the literature. In particular, the model presented here provides significant improvements compared to the OML theory.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available