4.7 Article

Transcritical bifurcations in nonintegrable Hamiltonian systems

Journal

PHYSICAL REVIEW E
Volume 77, Issue 4, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevE.77.046205

Keywords

-

Ask authors/readers for more resources

We report on transcritical bifurcations of periodic orbits in nonintegrable two-dimensional Hamiltonian systems. We discuss their existence criteria and some of their properties using a recent mathematical description of transcritical bifurcations in families of symplectic maps. We then present numerical examples of transcritical bifurcations in a class of generalized Henon-Heiles Hamiltonians and illustrate their stabilities and unfoldings under various perturbations of the Hamiltonians. We demonstrate that for Hamiltonians containing straight-line librating orbits, the transcritical bifurcation of these orbits is the typical case which occurs also in the absence of any discrete symmetries, while their isochronous pitchfork bifurcation is an exception. We determine the normal forms of both types of bifurcations and derive the uniform approximation required to include transcritically bifurcating orbits in the semiclassical trace formula for the density of states of the quantum Hamiltonian. We compute the coarse-grained density of states in a specific example both semiclassically and quantum mechanically and find excellent agreement of the results.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available