4.7 Article

Classical duals of derivatively self-coupled theories

Journal

PHYSICAL REVIEW D
Volume 85, Issue 12, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevD.85.125007

Keywords

-

Funding

  1. NSF [PHY-0758032, PHY-0930521]
  2. Department of Energy [DE-FG05-95ER40893-A020]
  3. US Department of Energy [DOE-FG03-97ER40546]

Ask authors/readers for more resources

Solutions to scalar theories with derivative self-couplings often have regions where nonlinearities are important. Given a classical source, there is usually a region, demarcated by the Vainshtein radius, inside of which the classical nonlinearities are dominant, while quantum effects are still negligible. If perturbation theory is used to find such solutions, the expansion generally breaks down as the Vainshtein radius is approached from the outside. Here we show that it is possible, by integrating in certain auxiliary fields, to reformulate these theories in such a way that nonlinearities become small inside the Vainshtein radius, and large outside it. This provides a complementary, or classically dual, description of the same theory-one in which nonperturbative regions become accessible perturbatively. We consider a few examples of classical solutions with various symmetries, and find that in all the cases the dual formulation makes it rather simple to study regimes in which the original perturbation theory fails to work. As an illustration, we reproduce by perturbative calculations some of the already known nonperturbative results, for a pointlike source, cosmic string, and domain wall, and derive a new one. The dual formulation may be useful for developing the parametrized post Newtonian formalism in the theories of modified gravity that give rise to such scalar theories.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available