4.5 Article

Symmetry energy at subnuclear densities deduced from nuclear masses

Journal

PHYSICAL REVIEW C
Volume 81, Issue 5, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevC.81.054302

Keywords

-

Ask authors/readers for more resources

We examine how nuclear masses are related to the density dependence of the symmetry energy. Using a macroscopic nuclear model we calculate nuclear masses in a way dependent on the equation of state of asymmetric nuclear matter. We find by comparison with empirical two-proton separation energies that a smaller symmetry energy at subnuclear densities, corresponding to a larger density symmetry coefficient L, is favored. This tendency, which is clearly seen for nuclei that are neutron-rich, nondeformed, and light, can be understood from the property of the surface symmetry energy in a compressible liquid-drop picture.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available