4.5 Article

Bulk-viscosity-driven clusterization of quark-gluon plasma and early freeze-out in relativistic heavy-ion collisions

Journal

PHYSICAL REVIEW C
Volume 77, Issue 3, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevC.77.034903

Keywords

-

Ask authors/readers for more resources

We introduce a new scenario for heavy ion collisions that could solve the lingering problems associated with the so-called Hanbury Brown-Twiss (HBT) puzzle. We postulate that the system starts expansion as the perfect quark-gluon fluid but close to freeze-out it splits into clusters, due to a sharp rise of bulk viscosity in the vicinity of the hadronization transition. We then argue that the characteristic cluster size is determined by the viscosity coefficient and the expansion rate. Typically it is much smaller and at most weakly dependent of the total system volume (hence reaction energy and multiplicity). These clusters maintain the pre-existing outward-going flow, as a spray of droplets, but develop no flow of their own, and hadronize by evaporation. We provide an ansatz for converting the hydrodynamic output into clusters.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available