4.6 Article

Dark-field transmission electron microscopy and the Debye-Waller factor of graphene

Journal

PHYSICAL REVIEW B
Volume 87, Issue 4, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.87.045417

Keywords

-

Funding

  1. NSF [0748880, 0955625]
  2. NIH [R25GM055052, 1S10RR23057]
  3. Intelligence Community Postdoctoral program
  4. Aerospace Corporation
  5. Direct For Mathematical & Physical Scien [1206849] Funding Source: National Science Foundation
  6. Direct For Mathematical & Physical Scien
  7. Division Of Materials Research [0955625, 0748880] Funding Source: National Science Foundation
  8. Division Of Materials Research [1206849] Funding Source: National Science Foundation

Ask authors/readers for more resources

Graphene's structure bears on both the material's electronic properties and fundamental questions about long-range order in two-dimensional crystals. We present an analytic calculation of selected area electron diffraction from multilayer graphene and compare it with data from samples prepared by chemical vapor deposition and mechanical exfoliation. A single layer scatters only 0.5% of the incident electrons, so this kinematical calculation can be considered reliable for five or fewer layers. Dark-field transmission electron micrographs of multilayer graphene illustrate how knowledge of the diffraction peak intensities can be applied for rapid mapping of thickness, stacking, and grain boundaries. The diffraction peak intensities also depend on the mean-square displacement of atoms from their ideal lattice locations, which is parameterized by a Debye-Waller factor. We measure the Debye-Waller factor of a suspended monolayer of exfoliated graphene and find a result consistent with an estimate based on the Debye model. For laboratory-scale graphene samples, finite size effects are sufficient to stabilize the graphene lattice against melting, indicating that ripples in the third dimension are not necessary. DOI: 10.1103/PhysRevB.87.045417

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available