4.6 Article

Parity quantum numbers in the density matrix renormalization group

Journal

PHYSICAL REVIEW B
Volume 86, Issue 2, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.86.024403

Keywords

-

Funding

  1. Hsing Tian Kong Culture & Education Development Foundation
  2. NSC in Taiwan [100-2112-M-002-013-MY3]

Ask authors/readers for more resources

In strongly correlated systems, numerical algorithms taking parity quantum numbers into account are used not only for accelerating computation by reducing the Hilbert space but also for particular manipulations such as the level spectroscopy (LS) method. By comparing energy differences among different parity quantum numbers, the LS method is a crucial technique used in identifying quantum critical points of Gaussian and Berezinsky-Kosterlitz-Thouless- (BKT) type quantum phase transitions. These transitions that occur in many one-dimensional systems are usually difficult to study numerically. Although the LS method is an effective strategy to locate critical points, it has lacked an algorithm that can manage large systems with parity quantum numbers. Here a parity density matrix renormalization group (DMRG) algorithm is discussed. The LS method is used with the DMRG in the S = 2 XXZ spin chain with uniaxial anisotropy. Quantum critical points of BKT and Gaussian transitions can be located well. Thus, the LS method becomes a very powerful tool for BKT and Gaussian transitions. In addition, Oshikawa's hypothesis in 1992 on the presence of an intermediate phase in the present model is supported by DMRG.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available