4.6 Article

Unconventional superconducting states of interlayer pairing in bilayer and trilayer graphene

Journal

PHYSICAL REVIEW B
Volume 86, Issue 21, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.86.214503

Keywords

-

Funding

  1. Institute for Advanced Studies in Basic Sciences (IASBS) Research Council [G2012IASBS110]

Ask authors/readers for more resources

We develop a theory for interlayer pairing of chiral electrons in graphene materials which results in an unconventional superconducting state with an s-wave spin-triplet order parameter. In a pure bilayer graphene, this superconductivity exhibits a gapless property with an exotic effect of temperature-induced condensation causing an increase of the pairing amplitude with increasing temperature. We find that a finite doping opens a gap in the excitation spectrum and weakens this anomalous temperature dependence. We further explore the possibility of realizing a variety of pairing patterns with different topologies of the Fermi surface, by tuning the difference in the doping of the two layers. In trilayer graphene, the interlayer superconductivity is characterized by a two-component order parameter which can be used to define two distinct phases in which only one of the components is nonvanishing. For ABA stacking the stable state is determined by a competition between these two phases. On variation of the relative amplitude of the corresponding coupling strength, a first-order phase transition can occur between these two phases. For ABC stacking, we find that the two phases coexist with the possibility of a similar phase transition, which turns out to be second order. DOI: 10.1103/PhysRevB.86.214503

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available