4.6 Article

Thermoelectric properties of silicon carbide nanowires with nitride dopants and vacancies

Journal

PHYSICAL REVIEW B
Volume 84, Issue 24, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.84.245451

Keywords

-

Funding

  1. MOST
  2. NSFC [90922033, 10934008, 10974253]
  3. CAS

Ask authors/readers for more resources

The thermoelectric properties of cubic zinc-blend silicon carbide nanowires (SiCNWs) with nitrogen impurities and vacancies along [111] direction are theoretically studied by means of atomistic simulations. It is found that the thermoelectric figure of merit ZT of SiCNWs can be significantly enhanced by doping N impurities together with making Si vacancies. Aiming at obtaining a large ZT, we study possible energetically stable configurations, and disclose that, when N dopants are located at the center, a small number of Si vacancies at corners are most favored for n-type nanowires, while a large number of Si vacancies spreading into the flat edge sites are most favored for p-type nanowires. For the SiCNW with a diameter of 1.1 nm and a length of 4.6 nm, the ZT value for the n-type is shown capable of reaching 1.78 at 900 K. The conditions to get higher ZT values for longer SiCNWs are also addressed.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available