4.6 Article

Chebyshev matrix product state approach for spectral functions

Journal

PHYSICAL REVIEW B
Volume 83, Issue 19, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.83.195115

Keywords

-

Funding

  1. DFG [SFB 631, De-730/3-2, SFB-TR12, SPP 1285, De-730/4-1]
  2. Nanosystems Initiative Munich (NIM)

Ask authors/readers for more resources

We show that recursively generated Chebyshev expansions offer numerically efficient representations for calculating zero-temperature spectral functions of one-dimensional lattice models using matrix product state (MPS) methods. The main features of this Chebyshev matrix product state (CheMPS) approach are as follows: (i) it achieves uniform resolution over the spectral function's entire spectral width; (ii) it can exploit the fact that the latter can be much smaller than the model's many-body bandwidth; (iii) it offers a well-controlled broadening scheme that allows finite-size effects to be either resolved or smeared out, as desired; (iv) it is based on using MPS tools to recursively calculate a succession of Chebyshev vectors vertical bar t(n)>, (v) the entanglement entropies of which were found to remain bounded with increasing recursion order n for all cases analyzed here; and (vi) it distributes the total entanglement entropy that accumulates with increasing n over the set of Chebyshev vectors vertical bar t(n)>, which need not be combined into a single vector. In this way, the growth in entanglement entropy that usually limits density matrix renormalization group (DMRG) approaches is packaged into conveniently manageable units. We present zero-temperature CheMPS results for the structure factor of spin-1/2 antiferromagnetic Heisenberg chains and perform a detailed finite-size analysis. Making comparisons to three benchmark methods, we find that CheMPS (a) yields results comparable in quality to those of correction-vector DMRG, at dramatically reduced numerical cost; (b) agrees well with Bethe ansatz results for an infinite system, within the limitations expected for numerics on finite systems; and (c) can also be applied in the time domain, where it has potential to serve as a viable alternative to time-dependent DMRG (in particular, at finite temperatures). Finally, we present a detailed error analysis of CheMPS for the case of the noninteracting resonant level model.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available