4.6 Article

Charge and spin ordering in the mixed-valence compound LuFe2O4

Journal

PHYSICAL REVIEW B
Volume 81, Issue 13, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.81.134417

Keywords

-

Ask authors/readers for more resources

Landau theory and symmetry considerations lead us to propose an explanation for several seemingly paradoxical behaviors of charge ordering (CO) and spin ordering (SO) in the mixed valence compound LuFe2O4. Both SO and CO are highly frustrated. We analyze a lattice gas model of CO within mean-field theory and determine the magnitude of several of the phenomenological interactions. We show that the assumption of a continuous phase transitions at which CO or SO develops implies that both CO and SO are incommensurate. To explain how ferroelectric fluctuations in the charge-disordered phase can be consistent with an antiferroelectric-ordered phase, we invoke an electron-phonon interaction in which a low-energy (20 meV) zone-center transverse phonon plays a key role. The energies of all the zone center phonons are calculated from first principles. We give a Landau analysis which explains SO and we discuss a model of interactions which stabilizes the SO state, if it is assumed commensurate. However, we suggest a high-resolution experimental determination to see whether this phase is really commensurate, as believed up to now. The applicability of representation analysis is discussed. A tentative explanation for the sensitivity of the CO state to an applied magnetic field in field-cooled experiments is given.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available