4.6 Article

Quantum metrology in Lipkin-Meshkov-Glick critical systems

Journal

PHYSICAL REVIEW A
Volume 90, Issue 2, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevA.90.022111

Keywords

-

Funding

  1. MIUR [FIRB-LiCHIS-RBFR10YQ3H]

Ask authors/readers for more resources

The Lipkin-Meshkov-Glick (LMG) model describes critical systems with interaction beyond the first-neighbor approximation. Here we address quantum metrology in LMG systems and show how criticality may be exploited to improve precision. At first we focus on the characterization of LMG systems themselves, i.e., the estimation of anisotropy, and address the problem by considering the quantum Cramer-Rao bound. We evaluate the quantum Fisher information of small-size LMG chains made of N = 2, 3, and 4 lattice sites and also analyze the same quantity in the thermodynamical limit. Our results show that criticality is indeed a resource and that the ultimate bounds to precision may be achieved by tuning the external field and measuring the total magnetization of the system. We then address the use of LMG systems as quantum thermometers and show that (i) precision is governed by the gap between the lowest energy levels of the systems and (ii) field-dependent level crossing is a metrological resource to extend the operating range of the quantum thermometer.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available