4.6 Article

Collective modes of a spin-orbit-coupled Bose-Einstein condensate: A hydrodynamic approach

Journal

PHYSICAL REVIEW A
Volume 85, Issue 5, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevA.85.053607

Keywords

-

Funding

  1. NSFC [10874249]

Ask authors/readers for more resources

We studied the collective modes of a Bose-Einstein condensate (BEC) with spin-orbit coupling. We developed the hydrodynamic equations for spin-orbit coupled BECs and used them to study collective modes in the plane-wave phase and large Rabi coupling regime for both a uniform BEC and a BEC in a harmonic trap. In the homogeneous situation, we obtained energy spectra of elementary excitations and found that the spin-orbit coupling can increase the effective mass of the atoms, which will suppress the sound velocity. The spin-orbit coupling can also change the spin mixing, which will modify the interaction energy, and may lead to an enhancement of sound velocity. The competition between these two effects gives the behavior of sound velocity. In a harmonic trap, we found that the dipole mode and the breathing mode are coupled together in the plane-wave phase, and these two modes have a pi/2 phase difference, because the spin-orbit coupling and the interaction are not invariant under spin rotation. However, in the large Rabi coupling regime, the dipole mode and the breathing mode are decoupled due to the symmetry restriction.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available