4.6 Article

Quantum stabilizer codes for correlated and asymmetric depolarizing errors

Journal

PHYSICAL REVIEW A
Volume 82, Issue 1, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevA.82.012306

Keywords

-

Funding

  1. European Community [213681, FP7/2007-2013]

Ask authors/readers for more resources

We study the performance of common quantum stabilizer codes in the presence of asymmetric and correlated errors. Specifically, we consider the depolarizing noisy quantum memory channel and perform quantum error correction via the five- and seven-qubit stabilizer codes. We characterize these codes by means of the entanglement fidelity as a function of the error probability and the degree of memory. We show that their performances are lowered by the presence of correlations, and we compute the error probability threshold values for code effectiveness. Furthermore, we uncover that the asymmetry in the error probabilities does not affect the performance of the five-qubit code, while it does affect the performance of the seven-qubit code, which results in being less effective when considering correlated and symmetric depolarizing errors but more effective for correlated and asymmetric errors.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available