4.6 Article

Stabilizing chromophore binding on TiO2 for long-term stability of dye-sensitized solar cells using multicomponent atomic layer deposition

Journal

PHYSICAL CHEMISTRY CHEMICAL PHYSICS
Volume 16, Issue 18, Pages 8615-8622

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c4cp01130a

Keywords

-

Funding

  1. U.S. Department of Energy [8NT0001925]
  2. UNC Energy Frontier Research Center (EFRC) Center for Solar Fuels, an EFRC
  3. U.S. Department of Energy, Office of Science, and Office of Basic Energy Sciences [DE-SC0001011]
  4. Research Triangle Solar Fuels Institute

Ask authors/readers for more resources

Ambient humidity and high temperature are known to degrade dye-sensitized solar cells (DSSCs) via chromophore desorption. Recently, enhanced dye-attachment to TiO2 surfaces has been realized by coating molecularly functionalized surfaces with inorganic atomic layer deposition (ALD) coatings. Here, we apply this ALD approach to DSSCs and demonstrate that high energy conversion efficiencies can be maintained while significantly extending device lifetimes. While single component ALD layers show improved high-temperature stability, it significantly degraded up to 45% of initial DSSC performance right after ALD. We, however, find that mixed component ALD layers provide initial efficiencies within 90% of their untreated counterparts while still extending device lifetimes. Optimized ALD protection schemes maintain 80% of their initial efficiency after 500 h of thermal aging at 80 degrees C whereas efficiency of DSSCs with no ALD protection drop below 60% of their initial efficiencies. IR spectroscopy conducted in situ during ALD reveals that carboxylate linker groups transition from unbound or weakly-bound states, respectively, to more strongly bound bidentate structures. This strategy to improve dye-attachment by ALD while maintaining high performance is novel and promising for extending the functional lifetime for DSSCs and other related devices.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

Article Chemistry, Multidisciplinary

Efficient Red Light Emitting Diodes Based on a Zero-Dimensional Organic Antimony Halide Hybrid

He Liu, Tunde Blessed Shonde, Fabiola Gonzalez, Oluwadara Joshua Olasupo, Sujin Lee, Derek Luong, Xinsong Lin, J. S. Raaj Vellore Winfred, Eric Lochner, Iqra Fatima, Kenneth Hanson, Biwu Ma

Summary: Zero-dimensional (0D) organic metal halide hybrids (OMHHs) are a new class of light emitting materials with exceptional color tunability. However, their application as emitters for electrically driven light emitting diodes (LEDs) is challenging due to the low conductivity of wide bandgap organic cations. In this study, a new OMHH, triphenyl(9-phenyl-9H-carbazol-3-yl) phosphonium antimony bromide (TPPcarzSbBr(4)), is developed as an efficient emitter for LEDs. Red LEDs fabricated with TPPcarzSbBr(4) thin films as the light emitting layer exhibit the highest reported external quantum efficiency (EQE), peak luminance, and current efficiency among 0D OMHH-based electroluminescence devices.

ADVANCED MATERIALS (2023)

Correction Chemistry, Physical

Enhanced Diastereocontrol via Strong Light-Matter Interactions in an Optical Cavity (vol 126, pg 9303, 2022)

Nam Vu, Grace M. McLeod, Kenneth Hanson, A. EugeneDePrinceIII

JOURNAL OF PHYSICAL CHEMISTRY A (2023)

Article Nanoscience & Nanotechnology

Reduced fatigue and leakage of ferroelectric TiN/Hf0.5Zr0.5O2/TiN capacitors by thin alumina interlayers at the top or bottom interface

H. Alex Hsain, Younghwan Lee, Suzanne Lancaster, Patrick D. Lomenzo, Bohan Xu, Thomas Mikolajick, Uwe Schroeder, Gregory N. Parsons, Jacob L. Jones

Summary: By inserting a 1 nm Al2O3 layer at the HZO/TiN interface, a protective passivating layer is introduced, resulting in improved remanent polarization and endurance of TiN/HZO/TiN capacitors.

NANOTECHNOLOGY (2023)

Article Chemistry, Multidisciplinary

Multi-Electron Transfer at H-Terminated p-Si Electrolyte Interfaces: Large Photovoltages under Inversion Conditions

Niklas D. Keller, Pierpaolo Vecchi, David C. Grills, Dmitry E. Polyansky, Gabriella P. Bein, Jillian L. Dempsey, James F. Cahoon, Gregory N. Parsons, Renato N. Sampaio, Gerald J. Meyer

Summary: Photovoltages for hydrogen-terminated p-Si(111) in an acetonitrile electrolyte were quantified using MV2+ and [Ru(bpy)3](PF6)2. The reduction potentials of MV2+ occurred within the forbidden bandgap, while those of [Ru(bpy)3]2+ occurred within the conduction band states. The study reveals that the most optimal photovoltage, electron-hole pair lifetime, and surface electron concentration occur when the reduction potentials lie energetically within the unfilled conduction band states with an inversion layer.

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY (2023)

Article Materials Science, Coatings & Films

In situ analysis of nucleation reactions during TiCl4/H2O atomic layer deposition on SiO2 and H-terminated Si surfaces treated with a silane small molecule inhibitor

Jan-Willem J. Clerix, Golnaz Dianat, Annelies Delabie, Gregory N. Parsons

Summary: This study investigates the adsorption of DMATMS on SiO2 and the subsequent reactions during TiCl4/H2O ALD. It is found that DMATMS selectively reacts with -OH groups on SiO2 and inhibits the reaction with TiCl4. Additionally, DMATMS can also react with residual -OH groups and reduce nucleation. The effectiveness of DMATMS passivation on SiO2 and H-terminated Si is quantified using Rutherford backscattering spectrometry.

JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A (2023)

Article Materials Science, Coatings & Films

Comparison of BCl3, TiCl4, and SOCl2 chlorinating agents for atomic layer etching of TiO2 and ZrO2 using tungsten hexafluoride

Holger Saare, Wenyi Xie, Gregory N. Parsons

Summary: Recent advances in the semiconductor industry have led to the demand for conformal deposition and etching processes in three-dimensional devices. This study investigates thermal atomic layer etching (ALE) of TiO2 and ZrO2 using different co-reactants. The results show that the choice of co-reactant affects the saturation and etch rates at different temperatures. The study expands the understanding of co-etchants' role in thermal ALE and increases the range of reactants for vapor etching of metal oxides.

JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A (2023)

Article Materials Science, Multidisciplinary

Aqueous degradation and atomic layer deposition (ALD) stabilization of BaAl2O4: Eu2+, Dy3+long afterglow phosphors

Erkul Karacaoglu, Mesut Uyaner, Ali Kemal Okyay, Mark D. Losego

Summary: This paper presents the mechanisms of aqueous degradation of BaAl2O4:Eu2+, Dy3+ phosphors and proposes a method to prevent degradation by nano encapsulation with Al2O3 through atomic layer deposition (ALD) technique. The degradation behavior of the phosphor in water is systematically studied, revealing hydrolysis and structural decomposition. A protective nanocoating using 10 nm Al2O3 is found to effectively prevent degradation for at least 7 days of water exposure. Successful encapsulation enables the potential use of the phosphor in aqueous applications or long-term humid environments.

MATERIALS CHEMISTRY AND PHYSICS (2023)

Article Biochemistry & Molecular Biology

Influence of Al2O3 Overlayers on Intermolecular Interactions between Metal Oxide Bound Molecules

Erica S. Knorr, Cody T. Basquill, Isabella A. Bertini, Ashley Arcidiacono, Drake Beery, Jonathan P. Wheeler, J. S. Raaj Vellore Winfred, Geoffrey F. Strouse, Kenneth Hanson

Summary: Intermolecular interactions on inorganic substrates significantly affect the electrochemical and photophysical properties of materials in hybrid electronics. Control of these interactions is essential for intentional formation or inhibition of processes on a surface. This study demonstrates the influence of surface loading and atomic-layer-deposited Al2O3 overlayers on the intermolecular interactions of a ZrO2-bound anthracene derivative, as observed through photophysical properties. The addition of ALD overlayers decreases excimer formation, but excimer features still dominate in the emission and transient absorption spectra.

MOLECULES (2023)

Article Chemistry, Multidisciplinary

Quantified Uniformity and Selectivity of TiO2 Films in 45-nm Half Pitch Patterns Using Area-Selective Deposition Supercycles

Rachel A. A. Nye, Kaat Van Dongen, Jean-Francois de Marneffe, Gregory N. N. Parsons, Annelies Delabie

Summary: Area-selective deposition (ASD) has potential for sub-10 nm manufacturing, but scaling to ultrasmall dimensions and understanding feature-dependent nonuniformity and selectivity loss remains challenging. This work addresses these challenges by quantifying uniformity and selectivity for passivation/deposition/etch supercycles in 45 nm half-pitch TiN/SiO2 line/space patterns. Three selective processes were used: DMA-TMS inhibition, TiO2 ALD, and HBr/BCl3 plasma etch. By employing three supercycles, this work achieves 8 nm of TiO2 with high uniformity and selectivity, improving on previous reports in similar nanoscale patterns. Integrated consideration of uniformity and selectivity will aid the design of selective deposition processes for nanoscale electronic devices.

ADVANCED MATERIALS INTERFACES (2023)

Article Chemistry, Inorganic & Nuclear

Exploring Differences in Lanthanide Excited State Reactivity Using a Simple Example: The Photophysics of La and Ce Thenoyltrifluoroacetone Complexes

Maksim Y. Livshits, Nikki J. Wolford, Jenny K. Banh, Molly M. MacInnes, Samuel M. Greer, J. S. R. Vellore Winfred, Kenneth Hanson, Thaige P. Gompa, Benjamin W. Stein

Summary: The experimental results of the study reveal the characteristics of different excited states in a series of TTA complexes. The excited state reactivity difference is summarized by constructing a Jablonski diagram. A computational framework is proposed for spectroscopic assignments and future studies.

INORGANIC CHEMISTRY (2023)

Article Chemistry, Multidisciplinary

Statistical Comparison between In-Person and Online General Chemistry Exam Outcomes: A COVID-Induced Case Study

Benjamin Sorenson, Kenneth Hanson

Summary: In spring 2020, the chemical education community faced a sudden transition to online classes and assessments. This study examines the impact of online exams on assessment quality and student performance in a General Chemistry II class. The results indicate that the quality of exams and student performance remained consistent regardless of in-person or online administration, and there was no evidence of increased cheating in online exams compared to in-person exams. Although these findings cannot be universally applied, they suggest that concerns about cheating in unproctored online exams may not be valid.

JOURNAL OF CHEMICAL EDUCATION (2023)

Article Chemistry, Multidisciplinary

Molecular Orientation and Energy Transfer Dynamics of a Metal Oxide Bound Self-Assembled Trilayer

Dhruba Pattadar, Ashley Arcidiacono, Drake Beery, Kenneth Hanson, S. Scott Saavedra

Summary: Self-assembly of molecular multilayers via metal ion linkages is an important strategy for interfacial engineering applications. In this study, the orientation of chromophores in a metal ion-linked trilayer was determined using UV-vis attenuated total reflection spectroscopy. The ATR approach allowed real-time monitoring of layer adsorption and detection of orientation changes. Transient absorption spectroscopy was also performed to study interlayer energy transfer dynamics.

LANGMUIR (2023)

Article Chemistry, Physical

Discovery of a Hybrid System for Photocatalytic CO2 Reduction via Attachment of a Molecular Cobalt-Quaterpyridine Complex to a Crystalline Carbon Nitride

Scott McGuigan, Stephen J. Tereniak, Carrie L. Donley, Avery Smith, Sungho Jeon, Fengyi Zhao, Renato N. Sampaio, Magnus Pauly, Landon Keller, Leonard Collins, Gregory N. Parsons, Tianquan Lian, Eric A. Stach, Paul A. Maggard

Summary: This study presents a functional hybrid photocatalyst system using a crystalline carbon nitride semiconductor, poly(triazine imide) lithium chloride (PTI-LiCl), and a CoCl2(qpy-Ph-COOH) catalyst for CO2 reduction. The optimized catalyst loading achieved high rates and selectivity for CO production, which were further improved by increasing the incident irradiance. Higher surface loadings were found to extend the lifetime of the molecular catalysts.

ACS APPLIED ENERGY MATERIALS (2023)

Article Chemistry, Multidisciplinary

Effects of film thickness on electrochemical properties of nanoscale polyethylenedioxythiophene (PEDOT) thin films grown by oxidative molecular layer deposition (oMLD)

Katrina G. Brathwaite, Quinton K. Wyatt, Amalie Atassi, Shawn A. Gregory, Eric Throm, David Stalla, Shannon K. Yee, Mark D. Losego, Matthias J. Young

Summary: This research investigates the electrochemical properties of PEDOT films and finds that film thickness plays an important role in the ordered structure and charge storage capacity. A 30 nm thick PEDOT film exhibits the highest face-on structure and the lowest charge storage capacity. Mixed domain films show higher charge storage capacity, likely due to the easier access of electrolyte to the edge region of PEDOT, facilitating faster ion transport.

NANOSCALE (2023)

Article Chemistry, Physical

Vapor phase synthesis of metal-organic frameworks on a nanofibrous aerogel creates enhanced functionality

Vahid Rahmanian, Muhammed Ziauddin Ahmad Ebrahim, Seyedamin Razavi, Mai Abdelmigeed, Eduardo Barbieri, Stefano Menegatti, Gregory N. Parsons, Fanxing Li, Tahira Pirzada, Saad A. Khan

Summary: This study presents a novel method for synthesizing metal-organic frameworks (MOFs) on 3D-structured nanofibrous aerogels (NFAs). The resulting hybrid aerogels exhibit promising applications in CO2 adsorption, heavy metal removal, and antibacterial properties.

JOURNAL OF MATERIALS CHEMISTRY A (2023)

Article Chemistry, Physical

Effect of a single methyl substituent on the electronic structure of cobaltocene studied by computationally assisted MATI spectroscopy

Sergey Yu. Ketkov, Sheng-Yuan Tzeng, Elena A. Rychagova, Anton N. Lukoyanov, Wen-Bih Tzeng

Summary: Metallocenes, including methylcobaltocene, play important roles in various fields of chemistry. The ionization energy and vibrational structure of (Cp ')(Cp)Co can be influenced by introducing methyl substituents. The mass-analyzed threshold ionization spectrum and DFT calculations provide accurate information about the properties and transformations of (Cp ')(Cp)Co.

PHYSICAL CHEMISTRY CHEMICAL PHYSICS (2024)

Review Chemistry, Physical

Polymer mechanochemistry: from single molecule to bulk material

Qifeng Mu, Jian Hu

Summary: Polymer mechanochemistry has experienced a renaissance due to the rapid development of mechanophores and principles governing mechanochemical transduction or material strengthening. It has not only provided fundamental guidelines for converting mechanical energy into chemical output, but also found applications in engineering and smart devices.

PHYSICAL CHEMISTRY CHEMICAL PHYSICS (2024)

Article Chemistry, Physical

Complex oiling-out behavior of procaine with stable and metastable liquid phases

Da Hye Yang, Francesco Ricci, Fredrik L. Nordstrom, Na Li

Summary: Through systematic evaluation of the oiling-out behavior of procaine, we identified both stable and metastable liquid-liquid phase separation, and established phase diagrams to assist in rational selection of crystallization strategies.

PHYSICAL CHEMISTRY CHEMICAL PHYSICS (2024)

Article Chemistry, Physical

Breaking the size constraint for nano cages using annular patchy particles

Vikki Anand Varma, Simmie Jaglan, Mohd Yasir Khan, Sujin B. Babu

Summary: Designing engineering structures like nanocages, shells, and containers through self-assembly of colloids is a challenging problem. This work proposes a simple model for the subunit, which leads to the formation of monodispersed spherical cages or containers. The model with only one control parameter can be used to design cages with the desired radius.

PHYSICAL CHEMISTRY CHEMICAL PHYSICS (2024)

Article Chemistry, Physical

Effect of the charge rate on the mechanical response of composite graphite electrodes: in situ experiment and mathematical analysis

Hainan Jiang, Yaolong He, Xiaolin Li, Zhiyao Jin, Huijie Yu, Dawei Li

Summary: The cycling lifespan and coulombic efficiency of lithium-ion batteries are crucial for high C-rate applications. The Li-ion concentration plays a crucial role in determining the mechanical integrity and structural stability of electrodes. This study focuses on graphite as the working electrode and establishes an experimental system to investigate the mechanical properties of composite graphite electrode at different C-rates. Considering the effect of Li-ion concentration in stress analysis is found to be significant.

PHYSICAL CHEMISTRY CHEMICAL PHYSICS (2024)

Article Chemistry, Physical

The effect of weak π-π interactions on single-molecule electron transport properties of the tetraphenylethene molecule and its derivatives: a first-principles study

Zhiye Wang, Yunchuan Li, Mingjun Sun

Summary: This study investigates the influence of intramolecular pi-pi interactions on the electronic transport capabilities of molecules. By designing and analyzing three pi-conjugated molecules, the researchers observe that different pi-conjugated structures have varying effects on electron transport. The findings provide a theoretical foundation for designing single-molecule electronic devices with multiple electron channels based on intramolecular pi-pi interactions.

PHYSICAL CHEMISTRY CHEMICAL PHYSICS (2024)

Article Chemistry, Physical

Designed fabrication of MoS2 hollow structures with different geometries and the comparative investigation toward capacitive properties

Yuandong Xu, Haoyang Feng, Chaoyang Dong, Yuqing Yang, Meng Zhou, Yajun Wei, Hui Guo, Yaqing Wei, Jishan Su, Yingying Ben, Xia Zhang

Summary: Hollow MoS2 cubes and spheres were successfully synthesized using a one-step hydrothermal method with the hard template method. The hollow MoS2 cubes exhibited higher specific capacitance and energy density compared to the hollow MoS2 spheres. The symmetrical supercapacitors assembled with these hollow structures showed good performance and high capacity retention after multiple cycles. These findings suggest that controlling the pore structure and surface characteristics of MoS2 is crucial for enhancing its electrochemical properties.

PHYSICAL CHEMISTRY CHEMICAL PHYSICS (2024)

Article Chemistry, Physical

Exploiting the photophysical features of DMAN template in ITQ-51 zeotype in the search for FRET energy transfer

Ainhoa Oliden-Sanchez, Rebeca Sola-Llano, Joaquin Perez-Pariente, Luis Gomez-Hortiguela, Virginia Martinez-Martinez

Summary: The combination of photoactive molecules and inorganic structures is important for the development of advanced materials in optics. In this study, bulky dyes were successfully encapsulated in a zeolitic framework, resulting in emission throughout the visible spectrum.

PHYSICAL CHEMISTRY CHEMICAL PHYSICS (2024)

Article Chemistry, Physical

Insights into the multi-functional lithium difluoro(oxalate)borate additive in boosting the Li-ion reaction kinetics for Li3VO4 anodes

Miaomiao Zhang, Cunyuan Pei, Qiqi Xiang, Lintao Liu, Zhongxu Dai, Huijuan Ma, Shibing Ni

Summary: The design of a solid electrolyte interphase (SEI) plays a crucial role in improving the electrochemical performance of anode materials. In this study, lithium difluoro(oxalate)borate (LiDFOB) is used as an electrolyte additive to form a protective SEI film on Li3VO4 (LVO) anodes. The addition of LiDFOB results in a dense, uniform, stable, and LiF-richer SEI, which enhances the Li-ion storage kinetics. The generated SEI also prevents further decomposition of the electrolyte and maintains the morphology of LVO anodes during charge/discharge processes. This work demonstrates the effectiveness of LiDFOB as a multi-functional additive for LiPF6 electrolytes and provides insights into SEI construction for high-performance LVO anodes.

PHYSICAL CHEMISTRY CHEMICAL PHYSICS (2024)

Article Chemistry, Physical

New insights into the structure of the Ag(111)-p(4 x 4)-O phase: high-resolution STM and DFT study

B. V. Andryushechkin, T. V. Pavlova, V. M. Shevlyuga

Summary: The atomic structure of the Ag(111)-p(4 x 4)-O phase was reexamined and two phases with the same periodicity were discovered. It was demonstrated that the accepted Ag6 model is incompatible with high-resolution oxygen-sensitive STM images.

PHYSICAL CHEMISTRY CHEMICAL PHYSICS (2024)

Article Chemistry, Physical

ClO-driven degradation of graphene oxide: new insights from DFT calculations

S. L. Romo-Avila, D. Marquez-Ruiz, R. A. Guirado-Lopez

Summary: In this study, we used density functional theory (DFT) calculations to investigate the interaction between model graphene oxide (GO) nanostructures and chlorine monoxide ClO. We aimed to understand the role of this highly oxidizing species in breaking C-C bonds and forming significant holes on GO sheets. Our results showed that C-C bonds in a single graphene oxide sheet can be broken through a simple mechanism involving the dissociation of two chemically attached ClO molecules. The formation of carbonyl groups and holes on the GO surface was also observed. This study provides important insights into the degradation of carbon nanotubes and the stability of GO during the myeloperoxidase (MPO) catalytic cycle.

PHYSICAL CHEMISTRY CHEMICAL PHYSICS (2024)

Article Chemistry, Physical

Composition dependence of X-ray stability and degradation mechanisms at lead halide perovskite single crystal surfaces

Alberto Garcia-Fernandez, Birgit Kammlander, Stefania Riva, Hakan Rensmo, Ute B. Cappel

Summary: In this study, the X-ray stability of five different lead halide perovskite compositions (MAPbI3, MAPbCl3, MAPbBr3, FAPbBr3, CsPbBr3) was investigated using photoelectron spectroscopy. Different degradation mechanisms and resistance to X-ray were observed depending on the crystal composition. Overall, perovskite compositions based on the MA+ cation were found to be less stable than those based on FA+ or Cs+. Metallic lead formation was most easily observed in the chloride perovskite, followed by bromide, and very little in MAPbI3. Multiple degradation processes were identified for the bromide compositions, including ion migration, formation of volatile and solid products, as well as metallic lead. CsBr was formed as a solid degradation product on the surface of CsPbBr3.

PHYSICAL CHEMISTRY CHEMICAL PHYSICS (2024)

Article Chemistry, Physical

Effect of porosity on rapid dynamic compaction of nickel nanopowder

Timofei Rostilov, Vadim Ziborov, Alexander Dolgoborodov, Mikhail Kuskov

Summary: The shock-loading behavior of nanomaterials is investigated in this study. It is found that shock compaction waves exhibit a distinct two-step structure, with the formation of faster precursor waves that travel ahead of the main compaction waves. The complexity of the shock Hugoniot curve of the tested nanomaterial is described, and the effect of initial porosity on the compressed states is demonstrated.

PHYSICAL CHEMISTRY CHEMICAL PHYSICS (2024)

Article Chemistry, Physical

The effect of temperature and oxygen partial pressure on the concentration of iron and manganese ions in La1/3Sr2/3Fe1-xMnxO3-δ

Sergey S. Nikitin, Alexander D. Koryakov, Elizaveta A. Antipinskaya, Alexey A. Markov, Mikhail V. Patrakeev

Summary: The stability of La1/3Sr2/3Fe1-xMnxO3-delta, a perovskite-type oxide, under reducing conditions is dependent on the manganese content. Increasing the manganese content leads to a decrease in stability. The behavior of iron and manganese in the oxide shows distinct differences, which can be attributed to the difference in the enthalpy of oxidation reactions. Additionally, the change in the La/Sr ratio affects the concentration of iron and manganese ions.

PHYSICAL CHEMISTRY CHEMICAL PHYSICS (2024)

Article Chemistry, Physical

Perovskenes: two-dimensional perovskite-type monolayer materials predicted by first-principles calculations

Mosayeb Naseri, Shirin Amirian, Mehrdad Faraji, Mohammad Abdur Rashid, Maicon Pierre Lourenco, Venkataraman Thangadurai, D. R. Salahub

Summary: Inspired by the successful transfer of freestanding ultrathin films of SrTiO3 and BiFeO3, this study assessed the structural stability and investigated the electronic, optical, and thermoelectric properties of a group of two-dimensional perovskite-type materials called perovskenes. The findings revealed that these materials are wide bandgap semiconductors with potential application in UV shielding. Moreover, they exhibit better electrical and thermal conductivity at high temperatures, enabling efficient power generation in thermoelectric devices.

PHYSICAL CHEMISTRY CHEMICAL PHYSICS (2024)