4.6 Article

A novel approach for analyzing electrochemical properties of mixed conducting solid oxide fuel cell anode materials by impedance spectroscopy

Journal

PHYSICAL CHEMISTRY CHEMICAL PHYSICS
Volume 16, Issue 40, Pages 22321-22336

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c4cp02467b

Keywords

-

Funding

  1. Austrian Science Fund (FWF) [F4509-N16, W1243-N16]
  2. Austrian Science Fund (FWF) [W1243] Funding Source: Austrian Science Fund (FWF)

Ask authors/readers for more resources

For application of acceptor-doped mixed conducting oxides as solid oxide fuel cell (SOFC) anodes, high electrochemical surface activity as well as acceptable electronic and ionic conductivity are crucial. In a reducing atmosphere, particularly the electronic conductivity of acceptor-doped oxides can become rather low and the resulting complex interplay of electrochemical reactions and charge transport processes makes a mechanistic interpretation of impedance measurements very complicated. In order to determine all relevant resistive and capacitive contributions of mixed conducting electrodes in a reducing atmosphere, a novel electrode design and impedance-based analysis technique is therefore introduced. Two interdigitating metallic current collectors are placed in a microelectrode, which allows in-plane measurements within the electrode as well as electrochemical measurements versus a counter electrode. Equivalent circuit models for quantifying the spectra of both measurement modes are developed and applied to simultaneously fit both spectra, using the same parameter set. In this manner, the electronic and ionic conductivity of the material as well as the area-specific resistance of the surface reaction and the chemical capacitance can be determined on a single microelectrode in a H-2-H2O atmosphere. The applicability of this new tool was demonstrated in SrTi0.7Fe0.3O3-delta (STFO) thin film microelectrodes, deposited on single-crystalline yttria-stabilized zirconia (YSZ) substrates. All materials parameters that contribute to the polarization resistance of STFO electrodes in a reducing atmosphere could thus be quantified.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

Article Electrochemistry

Surface Chemistry and Degradation Processes of Dense La0.6Sr0.4CoO3-δ Thin Film Electrodes

Matthaeus Siebenhofer, Ulrich Haselmann, Andreas Nenning, Gernot Friedbacher, Andreas Ewald Bumberger, Stefan Wurster, Werner Artner, Herbert Hutter, Zaoli Zhang, Juergen Fleig, Markus Kubicek

Summary: The surface morphology and chemistry changes of LSC thin films grown on different substrates were studied under SOFC operation conditions for 100 hours. The formation of particles at the LSC surface was monitored using atomic force microscopy. Different particle formation dynamics were observed depending on the thin film structure. Electron microscopy revealed that the particles were rich in Sr and S. Various measurements were performed on degraded LSC thin films, showing the presence of sulfur on the LSC surface and A-site cation enrichment. Impedance spectroscopy demonstrated an increase in polarization resistance and its activation energy for LSC grown on YSZ over the degradation period.

JOURNAL OF THE ELECTROCHEMICAL SOCIETY (2023)

Article Nanoscience & Nanotechnology

Surface Decorations on Mixed Ionic and Electronic Conductors: Effects on Surface Potential, Defects, and the Oxygen Exchange Kinetics

Christoph Riedl, Matthaeus Siebenhofer, Andreas Nenning, George E. Wilson, John Kilner, Christoph Rameshan, Andreas Limbeck, Alexander K. Opitz, Markus Kubicek, Juergen Fleig

Summary: The oxygen exchange kinetics of Pr0.1Ce0.9O2-delta electrodes were modified by decorating with submonolayer amounts of binary oxides. The OER rate and total conductivity were measured using i-PLD and changes in electrochemical properties were observed after each pulse of surface decoration. The surface chemistry of the electrodes was investigated using NAP-XPS and LEIS. The results showed that the OER rate was significantly altered by the surface decorations, but the fundamental OER mechanism was not affected.

ACS APPLIED MATERIALS & INTERFACES (2023)

Article Chemistry, Physical

Reversible Ultrathin PtOx Formation at the Buried Pt/YSZ(111) Interface Studied In Situ under Electrochemical Polarization

Vedran Vonk, Alexander K. Opitz, Sergey Volkov, Thomas F. Keller, Alexander Hutterer, Pirmin Lakner, Florian Bertram, Ju''rgen Fleig, Andreas Stierle

Summary: Three different platinum oxides were observed during electrochemical potential cycles of platinum thin film model electrodes on yttria-stabilized zirconia at 702 K in air. Electron and atomic microscopy showed delamination and the formation of pyramidlike blisters on the platinum electrode. The identified oxides were an ultrathin PtOx at the buried Pt/YSZ interface, polycrystalline beta-PtO2 inside the blisters, and an ultrathin alpha-PtO2 at the Pt/air interface.

JOURNAL OF PHYSICAL CHEMISTRY LETTERS (2023)

Article Electrochemistry

Defect Chemistry and Mixed Conduction in Lithium Lanthanum Titanate During the Transition from Electrolyte to Anode Material

Joseph Ring, Andreas Nenning, Juergen Fleig

Summary: LLTO is a promising material in Li ion battery application due to its stable ambient and high ionic conductivity. Under high Li chemical potential, LLTO undergoes a transition from an electrolyte to a high rate capable electrode material. However, the exact voltage of this transition and the electronic conductivity of reduced LLTO were unknown. In this study, we investigated the thermodynamics of lithium insertion and the ion and electron conductivity of reduced LLTO, and proposed a defect chemical model that fits well with the experimental data.

JOURNAL OF THE ELECTROCHEMICAL SOCIETY (2023)

Article Chemistry, Physical

Crystal-Orientation-Dependent Oxygen Exchange Kinetics on Mixed Conducting Thin-Film Surfaces Investigated by In Situ Studies

Mattha''us Siebenhofer, Christoph Riedl, Andreas Nenning, Sergej Raznjevic, Felix Fellner, Werner Artner, Zaoli Zhang, Christoph Rameshan, Ju''rgen Fleig, Markus Kubicek

Summary: The oxygen exchange kinetics and surface chemistry of dense LSC thin films on different orientations were investigated using in-situ impedance spectroscopy and NAP-XPS. The results showed that the exchange kinetics on pristine LSC surfaces were fast and independent of orientation. However, in the presence of acidic, gaseous impurities, the (001) orientation was more susceptible to the formation of sulfate adsorbates and performance degradation. This finding has implications for solid oxide cell electrodes with porous materials.

ACS APPLIED ENERGY MATERIALS (2023)

Article Energy & Fuels

Roadmap on exsolution for energy applications

Dragos Neagu, J. T. S. Irvine, Jiayue Wang, Bilge Yildiz, Alexander K. Opitz, Juergen Fleig, Yuhao Wang, Jiapeng Liu, Longyun Shen, Francesco Ciucci, Brian A. Rosen, Yongchun Xiao, Kui Xie, Guangming Yang, Zongping Shao, Yubo Zhang, Jakob Reinke, Travis A. Schmauss, Scott A. Barnett, Roelf Maring, Vasileios Kyriakou, Usman Mushtaq, Mihalis N. Tsampas, Youdong Kim, Ryan O'Hayre, Alfonso J. Carrillo, Thomas Ruh, Lorenz Lindenthal, Florian Schrenk, Christoph Rameshan, Evangelos I. Papaioannou, Kalliopi Kousi, Ian S. Metcalfe, Xiaoxiang Xu, Gang Liu

Summary: In the past decade, exsolution has become a powerful method for decorating oxide supports with dispersed nanoparticles for energy and catalytic applications. Exsolved nanoparticles have set new standards in terms of activity, durability, and functionality, due to their exceptional anchorage and ability to be produced, transformed, and applied in various ways. When combined with multifunctional supports like perovskite oxides, exsolution becomes a promising platform for advanced energy materials. This review discusses the current status of exsolution and explores future research directions for its application.

JOURNAL OF PHYSICS-ENERGY (2023)

Article Chemistry, Physical

Electronic and ionic effects of sulphur and other acidic adsorbates on the surface of an SOFC cathode material

Matthaeus Siebenhofer, Andreas Nenning, George E. Wilson, John A. Kilner, Christoph Rameshan, Markus Kubicek, Juergen Fleig, Peter Blaha

Summary: This study investigates the effects of sulphur adsorbates and other SOFC poisons on the electronic and ionic properties of an SrO-terminated LSC surface and its oxygen exchange kinetics. Experimental and computational methods were used to analyze the surface modifications caused by the adsorbates. The results show that sulphur adsorbates strongly deactivate the LSC surface and affect oxygen vacancy formation energies. The study also reveals a correlation between work function changes and redistributed charge with the acidity of the adsorbed oxide.

JOURNAL OF MATERIALS CHEMISTRY A (2023)

Article Chemistry, Physical

Improving and degrading the oxygen exchange kinetics of La0.6Sr0.4CoO3-δ by Sr decoration

Matthaeus Siebenhofer, Christoph Riedl, Andreas Nenning, Werner Artner, Christoph Rameshan, Alexander Karl Opitz, Juergen Fleig, Markus Kubicek

Summary: Minimizing the overpotential at the air electrode of solid oxide fuel cells (SOFC) is crucial for its broader application. Surface modification, including Sr decoration, can alter the oxygen exchange kinetics at SOFC cathode surfaces. However, the mechanism behind this effect is still debated. This study used in situ impedance spectroscopy to investigate the effect of Sr decorations under different deposition conditions and found opposing effects of Sr decoration depending on the deposition temperature and gas phase interactions.

JOURNAL OF MATERIALS CHEMISTRY A (2023)

Article Chemistry, Physical

Effect of a single methyl substituent on the electronic structure of cobaltocene studied by computationally assisted MATI spectroscopy

Sergey Yu. Ketkov, Sheng-Yuan Tzeng, Elena A. Rychagova, Anton N. Lukoyanov, Wen-Bih Tzeng

Summary: Metallocenes, including methylcobaltocene, play important roles in various fields of chemistry. The ionization energy and vibrational structure of (Cp ')(Cp)Co can be influenced by introducing methyl substituents. The mass-analyzed threshold ionization spectrum and DFT calculations provide accurate information about the properties and transformations of (Cp ')(Cp)Co.

PHYSICAL CHEMISTRY CHEMICAL PHYSICS (2024)

Review Chemistry, Physical

Polymer mechanochemistry: from single molecule to bulk material

Qifeng Mu, Jian Hu

Summary: Polymer mechanochemistry has experienced a renaissance due to the rapid development of mechanophores and principles governing mechanochemical transduction or material strengthening. It has not only provided fundamental guidelines for converting mechanical energy into chemical output, but also found applications in engineering and smart devices.

PHYSICAL CHEMISTRY CHEMICAL PHYSICS (2024)

Article Chemistry, Physical

Complex oiling-out behavior of procaine with stable and metastable liquid phases

Da Hye Yang, Francesco Ricci, Fredrik L. Nordstrom, Na Li

Summary: Through systematic evaluation of the oiling-out behavior of procaine, we identified both stable and metastable liquid-liquid phase separation, and established phase diagrams to assist in rational selection of crystallization strategies.

PHYSICAL CHEMISTRY CHEMICAL PHYSICS (2024)

Article Chemistry, Physical

Breaking the size constraint for nano cages using annular patchy particles

Vikki Anand Varma, Simmie Jaglan, Mohd Yasir Khan, Sujin B. Babu

Summary: Designing engineering structures like nanocages, shells, and containers through self-assembly of colloids is a challenging problem. This work proposes a simple model for the subunit, which leads to the formation of monodispersed spherical cages or containers. The model with only one control parameter can be used to design cages with the desired radius.

PHYSICAL CHEMISTRY CHEMICAL PHYSICS (2024)

Article Chemistry, Physical

Effect of the charge rate on the mechanical response of composite graphite electrodes: in situ experiment and mathematical analysis

Hainan Jiang, Yaolong He, Xiaolin Li, Zhiyao Jin, Huijie Yu, Dawei Li

Summary: The cycling lifespan and coulombic efficiency of lithium-ion batteries are crucial for high C-rate applications. The Li-ion concentration plays a crucial role in determining the mechanical integrity and structural stability of electrodes. This study focuses on graphite as the working electrode and establishes an experimental system to investigate the mechanical properties of composite graphite electrode at different C-rates. Considering the effect of Li-ion concentration in stress analysis is found to be significant.

PHYSICAL CHEMISTRY CHEMICAL PHYSICS (2024)

Article Chemistry, Physical

The effect of weak π-π interactions on single-molecule electron transport properties of the tetraphenylethene molecule and its derivatives: a first-principles study

Zhiye Wang, Yunchuan Li, Mingjun Sun

Summary: This study investigates the influence of intramolecular pi-pi interactions on the electronic transport capabilities of molecules. By designing and analyzing three pi-conjugated molecules, the researchers observe that different pi-conjugated structures have varying effects on electron transport. The findings provide a theoretical foundation for designing single-molecule electronic devices with multiple electron channels based on intramolecular pi-pi interactions.

PHYSICAL CHEMISTRY CHEMICAL PHYSICS (2024)

Article Chemistry, Physical

Designed fabrication of MoS2 hollow structures with different geometries and the comparative investigation toward capacitive properties

Yuandong Xu, Haoyang Feng, Chaoyang Dong, Yuqing Yang, Meng Zhou, Yajun Wei, Hui Guo, Yaqing Wei, Jishan Su, Yingying Ben, Xia Zhang

Summary: Hollow MoS2 cubes and spheres were successfully synthesized using a one-step hydrothermal method with the hard template method. The hollow MoS2 cubes exhibited higher specific capacitance and energy density compared to the hollow MoS2 spheres. The symmetrical supercapacitors assembled with these hollow structures showed good performance and high capacity retention after multiple cycles. These findings suggest that controlling the pore structure and surface characteristics of MoS2 is crucial for enhancing its electrochemical properties.

PHYSICAL CHEMISTRY CHEMICAL PHYSICS (2024)

Article Chemistry, Physical

Exploiting the photophysical features of DMAN template in ITQ-51 zeotype in the search for FRET energy transfer

Ainhoa Oliden-Sanchez, Rebeca Sola-Llano, Joaquin Perez-Pariente, Luis Gomez-Hortiguela, Virginia Martinez-Martinez

Summary: The combination of photoactive molecules and inorganic structures is important for the development of advanced materials in optics. In this study, bulky dyes were successfully encapsulated in a zeolitic framework, resulting in emission throughout the visible spectrum.

PHYSICAL CHEMISTRY CHEMICAL PHYSICS (2024)

Article Chemistry, Physical

Insights into the multi-functional lithium difluoro(oxalate)borate additive in boosting the Li-ion reaction kinetics for Li3VO4 anodes

Miaomiao Zhang, Cunyuan Pei, Qiqi Xiang, Lintao Liu, Zhongxu Dai, Huijuan Ma, Shibing Ni

Summary: The design of a solid electrolyte interphase (SEI) plays a crucial role in improving the electrochemical performance of anode materials. In this study, lithium difluoro(oxalate)borate (LiDFOB) is used as an electrolyte additive to form a protective SEI film on Li3VO4 (LVO) anodes. The addition of LiDFOB results in a dense, uniform, stable, and LiF-richer SEI, which enhances the Li-ion storage kinetics. The generated SEI also prevents further decomposition of the electrolyte and maintains the morphology of LVO anodes during charge/discharge processes. This work demonstrates the effectiveness of LiDFOB as a multi-functional additive for LiPF6 electrolytes and provides insights into SEI construction for high-performance LVO anodes.

PHYSICAL CHEMISTRY CHEMICAL PHYSICS (2024)

Article Chemistry, Physical

New insights into the structure of the Ag(111)-p(4 x 4)-O phase: high-resolution STM and DFT study

B. V. Andryushechkin, T. V. Pavlova, V. M. Shevlyuga

Summary: The atomic structure of the Ag(111)-p(4 x 4)-O phase was reexamined and two phases with the same periodicity were discovered. It was demonstrated that the accepted Ag6 model is incompatible with high-resolution oxygen-sensitive STM images.

PHYSICAL CHEMISTRY CHEMICAL PHYSICS (2024)

Article Chemistry, Physical

ClO-driven degradation of graphene oxide: new insights from DFT calculations

S. L. Romo-Avila, D. Marquez-Ruiz, R. A. Guirado-Lopez

Summary: In this study, we used density functional theory (DFT) calculations to investigate the interaction between model graphene oxide (GO) nanostructures and chlorine monoxide ClO. We aimed to understand the role of this highly oxidizing species in breaking C-C bonds and forming significant holes on GO sheets. Our results showed that C-C bonds in a single graphene oxide sheet can be broken through a simple mechanism involving the dissociation of two chemically attached ClO molecules. The formation of carbonyl groups and holes on the GO surface was also observed. This study provides important insights into the degradation of carbon nanotubes and the stability of GO during the myeloperoxidase (MPO) catalytic cycle.

PHYSICAL CHEMISTRY CHEMICAL PHYSICS (2024)

Article Chemistry, Physical

Composition dependence of X-ray stability and degradation mechanisms at lead halide perovskite single crystal surfaces

Alberto Garcia-Fernandez, Birgit Kammlander, Stefania Riva, Hakan Rensmo, Ute B. Cappel

Summary: In this study, the X-ray stability of five different lead halide perovskite compositions (MAPbI3, MAPbCl3, MAPbBr3, FAPbBr3, CsPbBr3) was investigated using photoelectron spectroscopy. Different degradation mechanisms and resistance to X-ray were observed depending on the crystal composition. Overall, perovskite compositions based on the MA+ cation were found to be less stable than those based on FA+ or Cs+. Metallic lead formation was most easily observed in the chloride perovskite, followed by bromide, and very little in MAPbI3. Multiple degradation processes were identified for the bromide compositions, including ion migration, formation of volatile and solid products, as well as metallic lead. CsBr was formed as a solid degradation product on the surface of CsPbBr3.

PHYSICAL CHEMISTRY CHEMICAL PHYSICS (2024)

Article Chemistry, Physical

Effect of porosity on rapid dynamic compaction of nickel nanopowder

Timofei Rostilov, Vadim Ziborov, Alexander Dolgoborodov, Mikhail Kuskov

Summary: The shock-loading behavior of nanomaterials is investigated in this study. It is found that shock compaction waves exhibit a distinct two-step structure, with the formation of faster precursor waves that travel ahead of the main compaction waves. The complexity of the shock Hugoniot curve of the tested nanomaterial is described, and the effect of initial porosity on the compressed states is demonstrated.

PHYSICAL CHEMISTRY CHEMICAL PHYSICS (2024)

Article Chemistry, Physical

The effect of temperature and oxygen partial pressure on the concentration of iron and manganese ions in La1/3Sr2/3Fe1-xMnxO3-δ

Sergey S. Nikitin, Alexander D. Koryakov, Elizaveta A. Antipinskaya, Alexey A. Markov, Mikhail V. Patrakeev

Summary: The stability of La1/3Sr2/3Fe1-xMnxO3-delta, a perovskite-type oxide, under reducing conditions is dependent on the manganese content. Increasing the manganese content leads to a decrease in stability. The behavior of iron and manganese in the oxide shows distinct differences, which can be attributed to the difference in the enthalpy of oxidation reactions. Additionally, the change in the La/Sr ratio affects the concentration of iron and manganese ions.

PHYSICAL CHEMISTRY CHEMICAL PHYSICS (2024)

Article Chemistry, Physical

Perovskenes: two-dimensional perovskite-type monolayer materials predicted by first-principles calculations

Mosayeb Naseri, Shirin Amirian, Mehrdad Faraji, Mohammad Abdur Rashid, Maicon Pierre Lourenco, Venkataraman Thangadurai, D. R. Salahub

Summary: Inspired by the successful transfer of freestanding ultrathin films of SrTiO3 and BiFeO3, this study assessed the structural stability and investigated the electronic, optical, and thermoelectric properties of a group of two-dimensional perovskite-type materials called perovskenes. The findings revealed that these materials are wide bandgap semiconductors with potential application in UV shielding. Moreover, they exhibit better electrical and thermal conductivity at high temperatures, enabling efficient power generation in thermoelectric devices.

PHYSICAL CHEMISTRY CHEMICAL PHYSICS (2024)