4.6 Article

Individual dispersion of carbon nanotubes in epoxy via a novel dispersion-curing approach using ionic liquids

Journal

PHYSICAL CHEMISTRY CHEMICAL PHYSICS
Volume 15, Issue 28, Pages 11696-11703

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c3cp00064h

Keywords

-

Funding

  1. Australian Institute of Nuclear Science and Engineering (AINSE) Ltd [ALNGRA 11157]

Ask authors/readers for more resources

The effective dispersion of carbon nanotubes (CNTs) in a thermoset was achieved using ionic liquid as the dispersion-curing agent. We preferentially dispersed multiwalled carbon nanotubes (MWCNTs) down to individual tube levels in epoxy resin. Here the dispersion is ruled by the depletion of physical bundles within the MWCNT networks, for which molecular ordering of ionic liquids is considered responsible. The quantitative analyses using ultra small angle X-ray scattering (USAXS) confirmed the dispersion of individual MWCNTs in the matrix. The distance between the dispersed nanotubes was calculated at different nanotube loadings using the power law fitting of the USAXS data. The fine dispersion and subsequent curing, both controlled by ionic liquid, lead to composites with substantially enhanced fracture mechanical and thermomechanical properties with no reduction in thermal properties. Merging processing techniques of nanocomposites with ionic liquid for efficient dispersion of nanotubes and preferential curing of thermosets facilitates the development of new, high performance materials.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available