4.6 Article

Effects of electrode surface modification with chlorotoxin on patterning single glioma cells

Journal

PHYSICAL CHEMISTRY CHEMICAL PHYSICS
Volume 13, Issue 19, Pages 8953-8960

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c0cp02908d

Keywords

-

Funding

  1. National Institutes of Health [R01GM075095]
  2. NATIONAL INSTITUTE OF GENERAL MEDICAL SCIENCES [R01GM075095] Funding Source: NIH RePORTER

Ask authors/readers for more resources

A microchip patterned with arrays of single cancer cells can be an effective platform for the study of tumor biology, medical diagnostics, and drug screening. However, patterning and retaining viable single cancer cells on defined sites of the microarray can be challenging. In this study we used a tumor cell-specific peptide, chlorotoxin (CTX), to mediate glioma cell adhesion on arrays of gold microelectrodes and investigated the effects of three surface modification schemes for conjugation of CTX to the microelectrodes on single cell patterning, which include physical adsorption, covalent bonding mediated by N-hydroxysuccinimide (NHS), and covalent bonding via crosslinking succinimidyl iodoacetate and Traut's (SIA-Traut) reagents. The CTX immobilization to microelectrodes was confirmed by high-resolution X-ray photoelectron spectroscopy. Physically adsorbed CTX showed better support for cell adhesion and is more effective in confining adhered cells on the electrodes than covalently-bound CTX. Furthermore, cell adhesion and spreading on microelectrodes were quantified in real-time by impedance measurements, which revealed an impedance signal from physically adsorbed CTX electrodes four times greater than the signal from covalently-bound CTX electrodes.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available