4.6 Article

Substrate effect on supramolecular self-assembly: from semiconductors to metals

Journal

PHYSICAL CHEMISTRY CHEMICAL PHYSICS
Volume 11, Issue 30, Pages 6498-6504

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/b905125b

Keywords

-

Ask authors/readers for more resources

Terephthalic acid (TPA) deposited on Si(111)-7 x 7, Si(111)-root 3 x root 3-Ag and Ag(111) has been studied as a model system to understand how much passivated semiconductor surfaces differ from semiconductor and metal surfaces in respect of supramolecular self assembly. By scanning tunneling microscopy it is found that TPA molecules do not form any ordered supramolecular structure on the pristine semiconductor surface, due to a strong molecule-substrate interaction. On the contrary, TPA has a weaker interaction with Si(111)-root 3 x root 3-Ag, leading to the formation of an ordered supramolecular layer stabilized by carboxyl hydrogen bonds. These structures are very similar to the supramolecular layer of TPA formed on Ag(111), indicating that the two substrates behave similarly for what concerns the adsorption of functional organic molecules. However, the deposition of Fe on the TPA layers on Si(111)-root 3 x root 3-Ag does not induce the formation of two-dimensional metal-organic frameworks which, on the contrary, readily develop on Ag(111). Possible origins of this difference are discussed.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available