4.3 Article

On the properties of real finite-sized planar and tubular stent-like auxetic structures

Journal

PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS
Volume 251, Issue 2, Pages 321-327

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/pssb.201384257

Keywords

auxetic; finite-sized structures; negative Poisson's ratio; stents; Young's modulus

Funding

  1. Malta Council for Science and Technology [RI-2011-024]

Ask authors/readers for more resources

Auxetics, i.e. systems with a negative Poisson's ratio, exhibit the unexpected property of becoming wider when stretched and narrower when compressed. This property arises from the manner in which the internal geometric units within the system deform when the system is submitted to a stress and may be explained in terms of geometry-deformation mechanism' based models. This work considers realistic finite implementations of the well known rotating squares system in the form of (i) a finite planar structure and (ii) a tubular conformation, as one typically finds in stents. It shows that although the existing models of the Poisson's ratios and moduli based on periodic systems may be appropriate to model systems where the geometry/deformation mechanism operate at the micro- or nano- (molecular) level where a system may be considered as a quasi infinite system, corrections to the model may need to be made when one considers finite structures with a small number of repeat units and suggests that for finite systems, especially for the 2D systems, the moduli as predicted by the periodic model may be significantly overestimating the moduli of the real system, even sometimes by as much as 200%. (C) 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available