4.7 Article

Radiation endurance of piezoelectric ultrasonic transducers - A review

Journal

ULTRASONICS
Volume 57, Issue -, Pages 1-10

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.ultras.2014.10.024

Keywords

Ultrasonic NDT; Piezoelectric transducers; Nuclear reactor inspection; Radiation endurance; Transducer failure

Funding

  1. Canadian Nuclear Waste Management Organization (NWMO) [00760 A-TDS]

Ask authors/readers for more resources

A literature survey is presented on the radiation endurance of piezoelectric ultrasonic transducer components and complete transducer assemblies, as functions of cumulative gamma dose and neutron fluence. The most extensive data on this topic has been acquired in CANDU electrical generating stations, which use piezoelectric ultrasonic transducers manufactured commercially with minor accommodation for high radiation fields. They have been found to be reliable for cumulative gamma doses of up to approximately 2 MegaGrays; a brief summary is made of the associated accommodations required to the transducer design, and the ultimate expected failure modes. Outside of the CANDU experience, endurance data have been acquired under a diverse spectrum of operating conditions; this can impede a direct comparison of the information from different sources. Much of this data is associated with transducers immersed in liquid metal coolants associated with advanced reactor designs. Significant modifications to conventional designs have led to the availability of custom transducers that can endure well over 100 MegaGrays of cumulative gamma dose. Published data on transducer endurance against neutron fluence are reviewed, but are either insufficient, or were reported with inadequate description of test conditions, to make general conclusions on transducer endurance with high confidence. Several test projects are planned or are already underway by major laboratories and research consortia to augment the store of transducer endurance data with respect to both gamma and neutron radiation. (C) 2014 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available