4.6 Review

Human genetic variation within neural crest enhancers: molecular and phenotypic implications

Publisher

ROYAL SOC
DOI: 10.1098/rstb.2012.0360

Keywords

neural crest; craniofacial; enhancer; single nucleotide polymorphism; chromatin; cooperativity

Categories

Funding

  1. NIH [RO1 GM095555, CIRM RB3-05100]
  2. Siebel Scholarship

Ask authors/readers for more resources

Developmental gene expression programmes are coordinated by the specialized distal cis-regulatory elements called enhancers, which integrate lineage- and signalling-dependent inputs to guide morphogenesis. In previous work, we characterized the genome-wide repertoire of active enhancers in human neural crest cells (hNCC), an embryonic cell population with critical roles in craniofacial development. We showed that in hNCC, co-occupancy of a master regulator TFAP2A with nuclear receptors NR2F1 and NR2F2 correlates with the presence of permissive enhancer chromatin states. Here, we take advantage of pre-existing human genetic variation to further explore potential cooperation between TFAP2A and NR2F1/F2. We demonstrate that isolated single nucleotide polymorphisms affecting NR2F1/F2-binding sites within hNCC enhancers can alter TFAP2A occupancy and overall chromatin features at the same enhancer allele. We propose that a similar strategy can be used to elucidate other cooperative relationships between transcription factors involved in developmental transitions. Using the neural crest and its major contribution to human craniofacial phenotypes as a paradigm, we discuss how genetic variation might modulate the molecular properties and activity of enhancers, and ultimately impact human phenotypic diversity.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available