4.5 Article

Development of PLGA-Based Injectable Delivery Systems For Hydrophobic Fenretinide

Journal

PHARMACEUTICAL RESEARCH
Volume 27, Issue 10, Pages 2063-2074

Publisher

SPRINGER/PLENUM PUBLISHERS
DOI: 10.1007/s11095-010-0202-y

Keywords

controlled release; fenretinide; hydrophobic drug; in situ implant; s/o/w PLGA microparticle

Funding

  1. National Science Foundation [EAR-96-28196]
  2. Merck Co., Inc.

Ask authors/readers for more resources

Although efficient in vitro, fenretinide has not been successful clinically for either of the targeted indications-cancer prevention and dry age-related macular degeneration-because of various issues, such as low oral bioavailability. Therefore, controlled release carriers for parenteral delivery of fenretinide were developed. After examining the solubility profile of fenretinide, the drug was encapsulated in poly(lactic-co-glycolic acid) (PLGA) microparticles at 20% drug loading by an s/o/w methodology as well as into in situ-forming PLGA implants. The carrier morphology and drug release kinetics in an elevated polysorbate 80-containing release medium were studied. Preformulation studies revealed increased fenretinide solubility in various PLGA solvents including N-methylpyrrolidone (NMP) and 1:9 v/v methanol:methylene chloride. Co-solvent emulsion methods resulted in low encapsulation efficiency. With a s/o/w method, fenretinide release rates from injectable microparticles were adjusted by the o-phase concentration of end-capped PLGA, the drug particle size, and the particle porosity. In situ implants from non-capped PLGA in NMP exhibited a continuous release of similar to 70% drug over 1 month. Injectable carriers for fenretinide were successfully prepared, exhibiting excellent drug stability. Based on the in vitro release properties of the different carriers, the preferred injection sites and in vivo release rates will be determined in future preclinical studies.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available