4.4 Article

Erg K+ currents modulate excitability in mouse mitral/tufted neurons

Journal

PFLUGERS ARCHIV-EUROPEAN JOURNAL OF PHYSIOLOGY
Volume 459, Issue 1, Pages 55-70

Publisher

SPRINGER
DOI: 10.1007/s00424-009-0709-4

Keywords

Olfactory bulb; Mitral cells; HERG; Kv11; mGluR1

Categories

Funding

  1. Deutsche Forschungsgemeinschaft (SFB) [444, A3]
  2. SCHW [292/14-1]

Ask authors/readers for more resources

Different erg (ether-A -go-go-related gene; Kv11) K+ channel subunits are expressed throughout the brain. Especially mitral cells of the olfactory bulb are stained intensely by erg1a, erg1b, erg2, and erg3 antibodies. This led us to study the erg current in mitral/tufted (M/T) neurons from mouse olfactory bulb in primary culture. M/T neurons were identified by their morphology and presence of mGluR1 receptors, and RT-PCR demonstrated the expression of all erg subunits in cultured M/T neurons. Using an elevated external K+ concentration, a relatively uniform erg current was recorded in the majority of M/T cells and isolated with the erg channel blocker E-4031. With 4-s depolarizations, the erg current started to activate at -65 mV and exhibited half maximal activation at -51 mV. An increase in the external K+ concentration resulted in an increase in erg whole-cell conductance. The specific group 1 mGluR agonist, DHPG, which depolarizes mitral cells, reduced erg channel availability. DHPG accelerated erg current deactivation, reduced the maximum current amplitude, and shifted availability and activation curves to more depolarized potentials. A pharmacological block of erg channels depolarized the resting potential of M/T cells and clearly demonstrated the involvement of erg channels in the control of mitral cell excitability.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available